Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
J Colloid Interface Sci ; 670: 12-27, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38749379

RESUMO

A new catalyst has been developed that utilizes molybdenum oxide (MoO3)/nickel molybdenum oxide (NiMoO4) heterostructured nanorods coupled with Pt ultrafine nanoparticles for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) toward industrial-grade water splitting. This catalyst has been synthesized using a versatile approach and has shown to perform better than noble-metals catalysts, such as Pt/C and RuO2, at industrial-grade current level (≥1000 mA·cm-2). When used simultaneously as a cathode and anode, the proposed material yields 10 mA·cm-2 at a remarkably small cell voltage of 1.55 V and has shown extraordinary durability for over 50 h. Density functional theory (DFT) calculations have proved that the combination of MoO3 and NiMoO4 creates a metallic heterostructure with outstanding charge transfer ability. The DFT calculations have also shown that the excellent chemical coupling effect between the MoO3/NiMoO4 and Pt synergistically optimize the charge transfer capability and Gibbs free energies of intermediate species, leading to remarkably speeding up the reaction kinetics of water electrolysis.

2.
Biochem Biophys Res Commun ; 719: 150043, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38735206

RESUMO

In this study, a simple green synthesis of vanadium pentoxide nanoparticles (VNPs) was prepared by the extract of Kaffir lime fruit (Citrus hystrix) as a green reducing and stabilizing agent, along with the investigation of calcination temperature was carried out at 450 and 550 °C. It was affirmed that, at higher temperature (550 °C), the VNPs possessed a high degree crystalline following the construction of (001) lattice diffraction within an increase in crystalline size from 47.12 to 53.51 nm, although the band gap of the materials at 450 °C was lower than that of the VNPs-550 (2.53 versus 2.66 eV, respectively). Besides, the materials were assessed for the potential bioactivities toward antibacterial, antifungal, DNA cleavage, anti-inflammatory, and hemolytic performances. As a result, the antibacterial activity, with minimal inhalation concentration (MIC) < 6.25 µg/mL for both strains, and fungicidal one of the materials depicted the dose-dependent effects. Once, both VNPs exhibited the noticeable efficacy of the DNA microbial damage, meanwhile, the outstanding anti-inflammatory agent was involved with the IC50 of 123.636 and 227.706 µg/mL, accounting for VNPs-450 and VNPs-550, respectively. Furthermore, this study also demonstrated the hemolytic potential of the VNPs materials. These consequences declare the prospects of the VNPs as the smart and alternative material from the green procedure in biomedicine.

3.
Int J Biol Macromol ; 268(Pt 2): 131760, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38663693

RESUMO

In the adsorption process for wastewater treatment, the adsorbent plays an important role. A composite adsorptive material composed of graphitic carbon nitride and agar-derived porous carbon (CNPC) was fabricated from simple precursors (melamine, thiourea, and agar) and through a facile procedure with different melamine and thiourea ratios. Characterization of CNPC proved a successful formation of a porous structure consisting of mesopores and macropores, wherein CNPC holds distinctive electrochemical (lowered resistance and higher specific capacity) and photochemical properties (lowered bandgap to 2.33 eV) thanks to the combination of graphitic carbon nitride (CN) and agar-derived porous carbon (PC). Inheriting the immanent nature, CNPC was subjected to the adsorption of methylene blue (MB) dye in an aqueous solution. The highest adsorption capacity was 133 mg/g for CNPC-4 which was prepared using a melamine to thiourea ratio of 4:4 - equivalent to the removal rate of 53.2 % and following the pseudo-I-order reaction rate. The effect of pH points out that pH 7 and 9 were susceptible to maximum removal and pretreatment is not required while the optimal ratio of 7.5 mg of MB and 30 mg of material was also determined to yield the highest performance. Furthermore, the reusability of the material for three consecutive cycles was evaluated based on two methods pyrolysis at 200 °C and photocatalytic degradation by irradiation under visible light. In general, the photocatalytic regeneration pathway is more ample and efficient than pyrolysis in terms of energy efficiency (saving energy over 10 times) and adsorption capacity stability. As a whole, the construction of accessible regenerative and stable adsorbent could be a venturing step into the sustainable development spearhead for industries.


Assuntos
Ágar , Grafite , Azul de Metileno , Poluentes Químicos da Água , Adsorção , Grafite/química , Porosidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Azul de Metileno/química , Ágar/química , Purificação da Água/métodos , Triazinas/química , Recuperação e Remediação Ambiental/métodos , Carbono/química , Águas Residuárias/química , Concentração de Íons de Hidrogênio , Compostos de Nitrogênio/química , Cinética , Tioureia/química
4.
Microb Cell Fact ; 23(1): 115, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643109

RESUMO

BACKGROUND: The process of producing proteins in bacterial systems and secreting them through ATP-binding cassette (ABC) transporters is an area that has been actively researched and used due to its high protein production capacity and efficiency. However, some proteins are unable to pass through the ABC transporter after synthesis, a phenomenon we previously determined to be caused by an excessive positive charge in certain regions of their amino acid sequence. If such an excessive charge is removed, the secretion of any protein through ABC transporters becomes possible. RESULTS: In this study, we introduce 'linear charge density' as the criteria for possibility of protein secretion through ABC transporters and confirm that this criterion can be applied to various non-secretable proteins, such as SARS-CoV-2 spike proteins, botulinum toxin light chain, and human growth factors. Additionally, we develop a new algorithm, PySupercharge, that enables the secretion of proteins containing regions with high linear charge density. It selectively converts positively charged amino acids into negatively charged or neutral amino acids after linear charge density analysis to enable protein secretion through ABC transporters. CONCLUSIONS: PySupercharge, which also minimizes functional/structural stability loss of the pre-mutation proteins through the use of sequence conservation data, is currently being operated on an accessible web server. We verified the efficacy of PySupercharge-driven protein supercharging by secreting various previously non-secretable proteins commonly used in research, and so suggest this tool for use in future research requiring effective protein production.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Aminoácidos , Humanos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Aminoácidos/metabolismo , Proteínas de Bactérias/metabolismo , Mutação , Sequência de Aminoácidos
5.
Phys Chem Chem Phys ; 26(12): 9657-9664, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38469888

RESUMO

Two-dimensional (2D) metallic TaSe2 and semiconducting WSe2 materials have been successfully fabricated in experiments and are considered as promising contact and channel materials, respectively, for the design of next-generation electronic devices. Herein, we design a metal-semiconductor (M-S) heterostructure combining metallic TaSe2 and semiconducting WSe2 materials and investigate the atomic structure, electronic properties and controllable contact types of the combined TaSe2/WSe2 M-S heterostructure using first-principles calculations. Our results reveal that the TaSe2/WSe2 M-S heterostructure can adopt four different stable stacking configurations, all of which exhibit enhanced elastic constants compared to the constituent monolayers. Furthermore, the TaSe2/WSe2 M-S heterostructure exhibits p-type Schottky contact (SC) with Schottky barriers ranging from 0.36 to 0.49 eV, depending on the stacking configurations. The TaSe2/WSe2 M-S heterostructure can be considered as a promising M-S contact for next-generation electronic Schottky devices owing to its small tunneling resistivity of about 2.14 × 10-9 Ω cm2. More interestingly, the TaSe2/WSe2 M-S heterostructure exhibits tunable contact types and contact barriers under the application of an electric field. A negative electric field induces a transition from Schottky contact type to ohmic contact (OC) type. On the other hand, a positive electric field leads to a transformation from p-type SC to n-type SC. Our findings provide valuable insights into the practical applications of the TaSe2/WSe2 M-S heterostructure towards next-generation electronic devices.

6.
RSC Adv ; 14(7): 4966-4974, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38327810

RESUMO

The auxetic materials have exotic mechanical properties compared to conventional materials, such as higher indentation resistance, more superior sound absorption performance. Although the auxetic behavior has also been observed in two-dimensional (2D) nanomaterials, to date there has not been much research on auxetic materials in the vertical asymmetric Janus 2D layered structures. In this paper, we explore the mechanical, electronic, and transport characteristics of Janus Si2OX (X = S, Se, Te) monolayers by first-principle calculations. Except for the Si2OTe monolayer, both Si2OS and Si2OSe are found to be stable. Most importantly, both Si2OS and Si2OSe monolayers are predicted to be auxetic semiconductors with a large negative Poisson's ratio. The auxetic behavior is clearly observed in the Janus Si2OS monolayer with an extremely large negative Poisson's ratio of -0.234 in the x axis. At the equilibrium state, both Si2OS and Si2OSe materials exhibit indirect semiconducting characteristics and their band gaps can be easily altered by the mechanical strain. More interestingly, the indirect-direct bandgap phase transitions are observed in both Si2OS and Si2OSe monolayers when the biaxial strains are introduced. Further, the studied Janus structures also exhibit remarkably high electron mobility, particularly along the x direction. Our findings demonstrate that Si2OS and Si2OSe monolayers are new auxetic materials with asymmetric structures and show their great promise in electronic and nanomechanical applications.

7.
Nanoscale Adv ; 6(4): 1193-1201, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38356616

RESUMO

The emergence of van der Waals (vdW) heterostructures, which consist of vertically stacked two-dimensional (2D) materials held together by weak vdW interactions, has introduced an innovative avenue for tailoring nanoelectronic devices. In this study, we have theoretically designed a metal/semiconductor heterostructure composed of NbS2 and Janus MoSSe, and conducted a thorough investigation of its electronic properties and the formation of contact barriers through first-principles calculations. The effects of stacking configurations and the influence of external electric fields in enhancing the tunability of the NbS2/Janus MoSSe heterostructure are also explored. Our findings demonstrate that the NbS2/MoSSe heterostructure is not only structurally and thermally stable but also exfoliable, making it a promising candidate for experimental realization. In its ground state, this heterostructure exhibits p-type Schottky contacts characterized by small Schottky barriers and low tunneling barrier resistance, showing its considerable potential for utilization in electronic devices. Additionally, our findings reveal that the electronic properties, contact barriers and contact types of the NbS2/MoSSe heterostructure can be tuned by applying electric fields. A negative electric field leads to a conversion from a p-type Schottky contact to an n-type Schottky contact, whereas a positive electric field gives rise to a transformation from a Schottky into an ohmic contact. These insights offer valuable theoretical guidance for the practical utilization of the NbS2/MoSSe heterostructure in the development of next-generation electronic and optoelectronic devices.

8.
Sci Total Environ ; 912: 168985, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38056666

RESUMO

Understanding the regular variations in water levels and identifying the potential drivers under the combined pressures of anthropogenic activities and climate change can offer valuable insights into riverine management. In this study, we analyzed long-term daily observational data, including water levels and water discharge, spanning from the ~1950s to 2021 at seven gauging stations within the Red River basin. We investigated the spatiotemporal variation in mean water levels using standard analytical tools, including the Mann-Kendall (MK) test, rating curves, and Empirical Orthogonal Function (EOF). Specifically, we observed a notable and substantial decline in water levels downstream of the major tributaries, including Da, Red, and Lo Rivers, as well as at their confluence, starting at the end of 2008. Notably, a strong correlation between water levels and discharge is found, highlighting the pivotal role of discharge in influencing water levels. Surprisingly, relationships between water levels and climatic factors such as rainfall and air temperature proved less influential. This suggests that water levels are predominantly shaped by discharge and anthropogenic activities, rather than climate change. The study emphasized the substantial impact of human-induced activities, particularly dam operation and sand mining, on downstream water levels in the Red River basin. An intriguing finding revealed that upstream dynamics, particularly at the Hoa Binh dam, led to significant water level increases with the same discharge, attributed to channel deposition and reservoir water storage. The research's novelty is the comprehensive evaluation of long-term water level trends and its elucidation of the combined effects of anthropogenic activities and climate change, offering valuable insights for riverine management and emphasizing the influence of anthropogenic factors, notably dam regulation and sand mining, in driving shifts in water levels.

9.
Phys Chem Chem Phys ; 26(3): 1917-1928, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38115720

RESUMO

Reduction mechanisms between hydrazine and a multi-epoxide arrangement were investigated on a finite-sized graphene-oxide model with density functional theory. Three multistep reaction pathways were explored to examine different graphene-oxide (GO) deoxygenation scenarios. Epoxides sharing the same hexagonal ring show the typical one-by-one elimination of the oxygen functional groups through two protonation steps and the formation of cis-diazine and water. Nevertheless, the migration of one of the epoxy groups to an out-of-ring position has to precede the reduction. When a hexagonal ring separates two epoxy groups, forming a partially reduced surface with two hydroxyl groups is energetically favoured. This reduction product is so stable that it may remain on the surface after the termination of the reduction process. If further deoxygenation occurs, it can lead to surface fragmentation due to the ring opening of the remaining epoxides. The formation of nitrogen-containing functional groups at the edge of the graphene-oxide flake is also considered, and their surface presence is evaluated based on their thermodynamic stabilities.

10.
Nanoscale Adv ; 5(23): 6705-6713, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38024315

RESUMO

From the extending requirements for using innovative materials in advanced technologies, it is necessary to explore new materials for relevant applications. In this work, we design new two-dimensional (2D) Janus ZrSiSZ2 (Z = N, P, As) monolayers and investigate their crystal lattice and dynamic stability by using density functional theory investigations. The two stable structures of ZrSiSP2 and ZrSiSAs2 are then systematically examined for thermal, energetic, and mechanical stability, and electronic and transport properties. The calculation results demonstrate that both the ZrSiSP2 and ZrSiSAs2 monolayers have good thermal stability at room temperature and high energetic/mechanical stabilities for experimental synthesis. The studied structures are found to be in-direct semiconductors. Specifically, with moderate band-gap energies of 1.04 to 1.29 eV for visible light absorption, ZrSiSP2 and ZrSiSAs2 can be considered potential candidates for photovoltaic applications. The applied biaxial strains and external electric fields slightly change the band-gap energies of the monolayers. We also calculate the carrier mobilities for the transport properties based on the deformation potential method. Due to the lower effective masses, the carrier mobilities in the x direction are higher than those in the y direction. The carrier mobilities of the ZrSiSP2 and ZrSiSAs2 monolayers are anisotropic not only in transport directions but also for the electrons and holes. We believe that the results of our work may stimulate further studies to explore more new 2D Janus monolayers with novel properties of the MA2Z4 family materials.

11.
Langmuir ; 39(48): 17251-17260, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37972320

RESUMO

Conducting heterostructures have emerged as a promising strategy to enhance physical properties and unlock the potential application of such materials. Herein, we conduct and investigate the electronic and transport properties of the BSe/Sc2CF2 heterostructure using first-principles calculations. The BSe/Sc2CF2 heterostructure is structurally and thermodynamically stable, indicating that it can be feasible for further experiments. The BSe/Sc2CF2 heterostructure exhibits a semiconducting behavior with an indirect band gap and possesses type-II band alignment. This unique alignment promotes efficient charge separation, making it highly promising for device applications, including solar cells and photodetectors. Furthermore, type-II band alignment in the BSe/Sc2CF2 heterostructure leads to a reduced band gap compared to the individual BSe and Sc2CF2 monolayers, leading to enhanced charge carrier mobility and light absorption. Additionally, the generation of the BSe/Sc2CF2 heterostructure enhances the transport properties of the BSe and Sc2CF2 monolayers. The electric fields and strains can modify the electronic properties, thus expanding the potential application possibilities. Both the electric fields and strains can tune the band gap and lead to the type-II to type-I conversion in the BSe/Sc2CF2 heterostructure. These findings shed light on the versatile nature of the BSe/Sc2CF2 heterostructure and its potential for advanced nanoelectronic and optoelectronic devices.

12.
Sensors (Basel) ; 23(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37960447

RESUMO

Artificial intelligence (AI) radar technology offers several advantages over other technologies, including low cost, privacy assurance, high accuracy, and environmental resilience. One challenge faced by AI radar technology is the high cost of equipment and the lack of radar datasets for deep-learning model training. Moreover, conventional radar signal processing methods have the obstacles of poor resolution or complex computation. Therefore, this paper discusses an innovative approach in the integration of radar technology and machine learning for effective surveillance systems that can surpass the aforementioned limitations. This approach is detailed into three steps: signal acquisition, signal processing, and feature-based classification. A hardware prototype of the signal acquisition circuitry was designed for a Continuous Wave (CW) K-24 GHz frequency band radar sensor. The collected radar motion data was categorized into non-human motion, human walking, and human walking without arm swing. Three signal processing techniques, namely short-time Fourier transform (STFT), mel spectrogram, and mel frequency cepstral coefficients (MFCCs), were employed. The latter two are typically used for audio processing, but in this study, they were proposed to obtain micro-Doppler spectrograms for all motion data. The obtained micro-Doppler spectrograms were then fed to a simplified 2D convolutional neural networks (CNNs) architecture for feature extraction and classification. Additionally, artificial neural networks (ANNs) and 1D CNN models were implemented for comparative analysis on various aspects. The experimental results demonstrated that the 2D CNN model trained on the MFCC feature outperformed the other two methods. The accuracy rate of the object classification models trained on micro-Doppler features was 97.93%, indicating the effectiveness of the proposed approach.


Assuntos
Inteligência Artificial , Radar , Humanos , Processamento de Sinais Assistido por Computador , Caminhada , Análise de Fourier
13.
Sci Rep ; 13(1): 17377, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833411

RESUMO

The pathological outcome of dengue disease results from complex interactions between dengue virus (DENV) and host genetics and immune response. Complement receptor types 1 and 2 (CR1 and CR2) mediate complement activation through the alternative pathway. This study investigated the possible association of genetic polymorphisms and plasma levels of CR1 and CR2 with dengue disease. A total of 267 dengue patients and 133 healthy controls were recruited for this study. CR1 and CR2 gene polymorphisms were analyzed by Sanger sequencing, while plasma CR1 and CR2 levels were measured by ELISA. The frequency of the CR1 minor allele rs6691117G was lower in dengue patients and those with severe dengue compared to healthy controls. Plasma CR1 and CR2 levels were decreased in dengue patients compared to healthy controls (P < 0.0001) and were associated with platelet counts. CR1 levels were lower in dengue patients with warning signs (DWS) compared to those without DWS, while CR2 levels were decreased according to the severity of the disease and after 5 days (T1) and 8 days (T2) of follow-up. CR2 levels were decreased in dengue patients positive for anti-DENV IgG and IgM and patients with bleeding and could discriminate DWS and SD from dengue fever patients (AUC = 0.66). In conclusion, this study revealed a reduction in CR2 levels in dengue patients and that the CR1 SNP rs6691117A/G is associated with the dengue severity. The correlation of CR2 levels with platelet counts suggests that CR2 could be an additional biomarker for the prognosis of severe dengue disease.


Assuntos
Receptores de Complemento 3d , Dengue Grave , Humanos , Proteínas Sanguíneas , Gravidade do Paciente , Polimorfismo Genético , Receptores de Complemento/metabolismo , Receptores de Complemento 3b/genética , Dengue Grave/genética
14.
Sensors (Basel) ; 23(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37836939

RESUMO

The real-time monitoring of food freshness in refrigerators is of significant importance in detecting potential food spoiling and preventing serious health issues. One method that is commonly reported and has received substantial attention is the discrimination of food freshness via the tracking of volatile molecules. Nevertheless, the ambient environment of low temperature (normally below 4 °C) and high humidity (90% R.H.), as well as poor selectivity in sensing gas species remain the challenge. In this research, an integrated smart gas-tracking device is designed and fabricated. By applying pump voltage on the yttria-stabilized zirconia (YSZ) membrane, the oxygen concentration in the testing chamber can be manually tailored. Due to the working principle of the sensor following the mixed potential behavior, distinct differences in sensitivity and selectivity are observed for the sensor that operated at different oxygen concentrations. Typically, the sensor gives satisfactory selectivity to H2S, NH3, and C2H5OH at the oxygen concentrations of 10%, 30%, and 40%, respectively. In addition, an acceptable response/recovery rate (within 24 s) is also confirmed. Finally, a refrigerator prototype that includes the smart gas sensor is built, and satisfactory performance in discriminating food freshness status of fresh or semi-fresh is verified for the proposed refrigerator prototype. In conclusion, these aforementioned promising results suggest that the proposed integrated smart gas sensor could be a potential candidate for alarming food spoilage.


Assuntos
Temperatura Baixa , Alimentos , Umidade , Oxigênio
15.
Contemp Oncol (Pozn) ; 27(2): 71-79, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37794989

RESUMO

Introduction: This study aimed to evaluate the treatment outcomes of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) therapy alone or in combination with locoregional brain therapy for advanced EGFR-mutant non-small cell lung cancer (NSCLC) patients with brain metastases. Material and methods: A retrospective study involving 72 advanced EGFR-mutant NSCLC patients with brain metastases at the Vietnam National Cancer Hospital were conducted. Patients were divided into 2 groups: EGFR-TKI (erlotinib) monotherapy and EGFR-TKI combined with locoregional therapy (γ knife surgery - GKS or whole-brain radiation therapy). Evaluation criteria included clinical and laboratory characteristics, central nervous system (CNS) progression time, progression-free survival (PFS), overall survival (OS), T790M mutation rate, and adverse events. Results: Epidermal growth factor receptor tyrosine kinase inhibitor monotherapy patients had better performance status (PS), fewer CNS symptoms, and significantly fewer brain metastases (p < 0.05). Median PFS and OS were 11 and 25 months, respectively, in both groups. Patients with PS 0-1 had longer median PFS (15 months) than those with PS 2 (7 months) (p = 0.039). Exon 19 deletion patients in both groups had longer median OS (26 months) than those with L858R exon 21 (15 months) (p = 0.023). Patients with T790M mutation who received osimertinib after progression had longer median OS (41 months vs. 23 months, p = 0.0001). Median time to CNS progression was 13.9 months (48 patients). Longer time to CNS progression correlated with longer OS (R2 = 0.89). Conclusions: Epidermal growth factor receptor tyrosine kinase inhibitor therapy, with or without locoregional therapy, is effective for advanced EGFR-mutant NSCLC patients with brain metastases. Exon 19 deletion patients had better prognosis.

16.
Nanoscale Adv ; 5(18): 4979-4985, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37705766

RESUMO

Two-dimensional (2D) metal-semiconductor heterostructures play a critical role in the development of modern electronics technology, offering a platform for tailored electronic behavior and enhanced device performance. Herein, we construct a novel 2D metal-semiconductor MoSH@MoS2 heterostructure and investigate its structures, electronic properties and contact characteristics using first-principles investigations. We find that the MoSH@MoS2 heterostructure exhibits a p-type Schottky contact, where the specific Schottky barrier height varies depending on the stacking configurations employed. Furthermore, the MoSH@MoS2 heterostructures possess low tunneling probabilities, indicating a relatively low electron transparency across all the patterns of the MoSH@MoS2 heterostructures. Interestingly, by modulating the electric field, it is possible to modify the Schottky barriers and achieve a transformation from a p-type Schottky contact into an n-type Schottky contact. Our findings pave the way for the development of advanced electronics technology based on metal-semiconductor MoSH@MoS2 heterostructures with enhanced tunability and versatility.

17.
J Clin Imaging Sci ; 13: 19, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37559877

RESUMO

Objectives: This study aimed to assess the value of magnetic resonance perfusion (MR perfusion) and magnetic resonance spectroscopy (MR spectroscopy) in 3.0-Tesla magnetic resonanceimaging (MRI) for differential diagnosis of glioblastoma (GBM) and solitary brain metastasis (SBM). Material and Methods: This retrospective study involved 36 patients, including 24 cases of GBM and 12 of SBM diagnosed using histopathology. All patients underwent a 3.0-Tesla MRI examination with pre-operative MR perfusion and MR spectroscopy. We assessed the differences in age, sex, cerebral blood volume (CBV), relative CBV (rCBV), and the metabolite ratios of choline/N-acetylaspartate (Cho/NAA) and Cho/creatine between the GBM and SBM groups using the Mann-Whitney U-test and Chi-square test. The cutoff value, area under the curve, sensitivity, specificity, positive predictive value, and negative predictive value of the significantly different parameters between these two groups were determined using the receiver operating characteristic curve. Results: In MR perfusion, the CBV of the peritumoral region (pCBV) had the highest preoperative predictive value in discriminating GBM from SBM (cutoff: 1.41; sensitivity: 70.83%; and specificity: 83.33%), followed by the ratio of CBV of the solid tumor component to CBV of normal white matter (rCBVt/n) and the ratio of CBV of the pCBV to CBV of normal white matter (rCBVp/n). In MR spectroscopy, the Cho/NAA ratio of the pCBV (pCho/NAA; cutoff: 1.02; sensitivity: 87.50%; and specificity: 75%) and the Cho/NAA ratio of the solid tumor component (tCho/NAA; cutoff: 2.11; sensitivity: 87.50%; and specificity: 66.67%) were significantly different between groups. Moreover, combining these remarkably different parameters increased their diagnostic utility for distinguishing between GBM and SBM. Conclusion: pCBV, rCBVt/n, rCBVp/n, pCho/NAA, and tCho/NAA are useful indices for differentiating between GBM and SBM. Combining these indices can improve diagnostic performance in distinguishing between these two tumors.

18.
Dalton Trans ; 52(36): 12704-12716, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37609935

RESUMO

Phosphor-converted white light-emitting diodes (WLEDs) have received significant attention; however, the leaked light from their blue InGaN chips has an undesirable effect on human health. Hence, it is necessary to develop red, green, and blue-emitting phosphors, which can be excited by an NUV chip instead of a blue chip. Herein, green-emitting ZnO:Cu2+ phosphors have been successfully synthesized by a simple and facile thermal diffusion method. The obtained powder shows a broad emission band peaking at 525 nm and a strong absorption peak at 377 nm. The ZnO:5%Cu2+ phosphor annealed at 800 °C in 2 hours revealed a lifetime of 0.57 ms, an activation energy of 0.212 eV, and the highest emission intensity with (x, y) CIE colour coordinates (0.3130, 0.5253). A WLED prototype has been fabricated by coating the ZnO:5%Cu2+ phosphor on an NUV 375 nm LED chip, where this coated phosphor shows a high quantum efficiency (QE) of 56.6%. This is, so far, the highest reported QE value for ZnO-based phosphors. These results suggest that the ZnO:Cu2+ phosphor could be an excellent candidate for NUV-pumped phosphor-converted WLED applications.

19.
PLoS One ; 18(8): e0289825, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37611036

RESUMO

INTRODUCTION: Drug-related problems (DRPs) are common in clinical practice and occur at all stages of the medication process. The major factor contributing to DRPs is prescription, although patients' poor adherence to treatment is also a significant factor. This study evaluated type 2 diabetes outpatients in a hospital in Vietnam for drug-related problems (DRPs) and related variables. METHODS: A cross-sectional descriptive study was conducted on 495 outpatients who met the criteria and 157 people agreed to participate in the interview. Medication order review and medication adherence review were used to identify DRPs. The types of DRP were based on the Pharmaceutical Care Network Europe (PCNE) categories version 9.0. The identification and assessment DRPs were carried out by clinical pharmacists and get agreed upon by physicians who had not directly prescribed patients who participated in the study. RESULTS: A total of 762 DRPs were identified via prescribing review process, the average number of DRP on each prescription was 1.54±1.07, while 412 DRPs were determined through patient interviewing. The most frequent DRPs were "ADR (Adverse Drug Reaction) occurring" (68.8%). The main causes were "patient is unable to understand instructions properly" or "patient is not properly instructed", "patient stores insulin inappropriately", "patient decides to use unnecessary drugs" and "patient intentionally uses/takes less drug than prescribed or does not take the drug at all for whatever reason" which accounted for 65.0%, 41.4%, 38.2%, and 28.7%, respectively. From the prescribing review, the most observed DRPs were "Inappropriate drug according to guidelines/formulary" and "No or incomplete drug treatment in spite of existing indication", accounting for 45.0% and 42.9%, respectively. There was a significant association between age (OR 3.38, 95% CI: 1.01-11.30), duration of diabetes (OR 3.61, 95%CI: 1.11-11.74), presence of comorbidity (OR 5.31, 95%CI: 1.97-14.30), polypharmacy (OR: 2.95, 95%CI: 1.01-8.72) and DRPs. In patients, poor knowledge of antidiabetic agents was the main reason to lack adherence and occurring ADR (OR 2.73, 95%CI: 1.32-5.66, p = 0.007 and OR 2.49, 95%CI: 1.54-4.03, p = 0.001 respectively). CONCLUSION: DRPs occurred in the prescribing stage and relating to patient's behavior of drug administration was high. Clear identification of DRPs and the associated factors are essential for building the intervention process to improve effectiveness and safety in the treatment of type 2 diabetes mellitus patients.


Assuntos
Diabetes Mellitus Tipo 2 , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Pacientes Ambulatoriais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Estudos Transversais , Vietnã/epidemiologia , Hospitais , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Adesão à Medicação
20.
Phys Chem Chem Phys ; 25(32): 21468-21478, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37539527

RESUMO

Two-dimensional (2D) Janus materials with extraordinary properties are promising candidates for utilization in advanced technologies. In this study, new 2D Janus XWSiP2 (X = S, Se, Te) monolayers were constructed and their properties were systematically analyzed by using first-principles calculations. All three structures of SWSiP2, SeWSiP2, and TeWSiP2 exhibit high energetic stability for the experimental fabrication with negative and high Ecoh values, the elastic constants obey the criteria of Born-Huang, and no imaginary frequency exists in the phonon dispersion spectra. The calculated results from the PBE and HSE06 approaches reveal that the XWSiP2 are semiconductors with moderate direct band-gaps varying from 1.01 eV to 1.06 eV using the PBE method, and 1.39 eV to 1.44 eV using the HSE06 method. In addition, the electronic band structures of the three monolayers are significantly affected by the applied strains. Interestingly, the transitions from a direct to indirect semiconductor are observed for different biaxial strains εb. The transport parameters including the carrier mobility values along the x direction µx and y direction µy were also calculated to study the transport properties of the XWSiP2. The results indicate that the XWSiP2 monolayers not only have high carrier mobilities but also anisotropy in the transport directions for both holes and electrons. Together with the moderate and tunable energy gaps, the XWSiP2 materials are found to be potential candidates for application in the photonic, photovoltaic, optoelectronic, and electronic fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...