Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acc Chem Res ; 57(1): 164-174, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38117659

RESUMO

The molecular design of many peptide-based materials originates from structural proteins identified in living organisms. Prominent examples that have garnered broad interdisciplinary research interest (chemistry, materials science, bioengineering, etc.) include elastin, silk, or mussel adhesive proteins. The critical first steps in this type of research are to identify a convenient model system of interest followed by sequencing the prevailing proteins from which these biological structures are assembled. In our laboratory, the main model systems for many years have been the hard biotools of cephalopods, particularly their parrot-like tough beak and their sucker ring teeth (SRT) embedded within the sucker cuptions that line the interior surfaces of their arms and tentacles. Unlike the majority of biological hard tissues, these structures are devoid of biominerals and consist of protein/polysaccharide biomolecular composites (the beak) or, in the case of SRT, are entirely made of proteins that are assembled by supramolecular interactions.In this Account, we chronicle our journey into the discovery of these intriguing biological materials. We initially focus on their excellent mechanical robustness followed by the identification and sequencing of the structural proteins from which they are built, using the latest "omics" techniques including next-generation sequencing and high-throughput proteomics. A common feature of these proteins is their modular architecture at the molecular level consisting of short peptide repeats. We describe the molecular design of these peptide building blocks, highlighting the consensus motifs identified to play a key role in biofabrication and in regulating the mechanical properties of the macroscopic biological material. Structure/property relationships unveiled through advanced spectroscopic and scattering techniques, including Raman, infrared, circular dichroism, and NMR spectroscopies as well as wide-angle and small-angle X-ray scattering, are also discussed.We then present recent developments in exploiting the discovered molecular designs to engineer peptides and their conjugates for promising biomedical applications. One example includes short peptide hydrogels that self-assemble entirely under aqueous conditions and simultaneously encapsulate large macromolecules during the gelation process. A second example involves peptide coacervate microdroplets produced by liquid-liquid phase separation. These microdroplets are capable of recruiting and delivering large macromolecular therapeutics (genes, mRNA, proteins, peptides, CRISPR/Cas 9 modalities, etc.) into mammalian cells, which introduces exciting prospects in cancer, gene, and immune therapies.This Account also serves as a testament to how curiosity-driven explorations, which may lack an obvious practical goal initially, can lead to discoveries with unexpected and promising translational potential.


Assuntos
Decapodiformes , Comportamento Exploratório , Animais , Decapodiformes/genética , Peptídeos/química , Seda , Substâncias Macromoleculares , Mamíferos
2.
J Am Chem Soc ; 145(6): 3382-3393, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36730942

RESUMO

The occurrence of modular peptide repeats in load-bearing (structural) proteins is common in nature, with distinctive peptide sequences that often remain conserved across different phylogenetic lineages. These highly conserved peptide sequences endow specific mechanical properties to the material, such as toughness or elasticity. Here, using bioinformatic tools and phylogenetic analysis, we have identified the GX8 peptide with the sequence GLYGGYGX (where X can be any residue) in a wide range of organisms. By simple mutation of the X residue, we demonstrate that GX8 can be self-assembled into various supramolecular structures, exhibiting vastly different physicochemical and viscoelastic properties, from liquid-like coacervate microdroplets to hydrogels to stiff solid materials. A combination of spectroscopic, electron microscopy, mechanical, and molecular dynamics studies is employed to obtain insights into molecular scale interactions driving self-assembly of GX8 peptides, underscoring that π-π stacking and hydrophobic interactions are the drivers of peptide self-assembly, whereas the X residue determines the extent of hydrogen bonding that regulates the macroscopic mechanical response. This study highlights the ability of single amino-acid polymorphism to tune the supramolecular assembly and bulk material properties of GX8 peptides, enabling us to cover a broad range of potential biomedical applications such as hydrogels for tissue engineering or coacervates for drug delivery.


Assuntos
Aminoácidos , Peptídeos , Filogenia , Peptídeos/química , Hidrogéis/química , Mutação
3.
Adv Healthc Mater ; 12(1): e2201900, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36177679

RESUMO

Chronic wounds are non-healing wounds characterized by a prolonged inflammation phase. Excessive inflammation leads to elevated protease levels and consequently to a decrease in growth factors at wound sites. Stem cell secretome therapy has been identified as a treatment strategy to modulate the microenvironment of chronic wounds via supplementation with anti-inflammatory/growth factors. However, there is a need to develop better secretome delivery systems that are able to encapsulate the secretome without denaturation, in a sustained manner, and that are fully biocompatible. To address this gap, a recombinant squid suckerin-spider silk fusion protein is developed with cell-adhesion motifs capable of thermal gelation at physiological temperatures to form hydrogels for encapsulation and subsequent release of the stem cell secretome. Freeze-thaw treatment of the protein hydrogel results in a modified porous cryogel that maintains slow degradation and sustained secretome release. Chronic wounds of diabetic mice treated with the secretome-laden cryogel display increased wound closure, presence of endothelial cells, granulation wound tissue thickness, and reduced inflammation with no fibrotic scar formation. Overall, these in vivo indicators of wound healing demonstrate that the fusion protein hydrogel displays remarkable potential as a delivery system for secretome-assisted chronic wound healing.


Assuntos
Diabetes Mellitus Experimental , Células-Tronco Mesenquimais , Camundongos , Animais , Humanos , Hidrogéis/farmacologia , Criogéis , Seda , Secretoma , Células Endoteliais da Veia Umbilical Humana
4.
Biomacromolecules ; 23(7): 2878-2890, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35748755

RESUMO

Nanoscopic structural control with long-range ordering remains a profound challenge in nanomaterial fabrication. The nanoarchitectured egg cases of elasmobranchs rely on a hierarchically ordered latticework for their protective function─serving as an exemplary system for nanoscale self-assembly. Although the proteinaceous precursors are known to undergo intermediate liquid crystalline phase transitions before being structurally arrested in the final nanolattice architecture, their sequences have so far remained unknown. By leveraging RNA-seq and proteomic techniques, we identified a cohort of nanolattice-forming proteins comprising a collagenous midblock flanked by domains typically associated with innate immunity and network-forming collagens. Structurally homologous proteins were found in the genomes of other egg-case-producing cartilaginous fishes, suggesting a conserved molecular self-assembly strategy. The identity and stabilizing role of cross-links were subsequently elucidated using mass spectrometry and in situ small-angle X-ray scattering. Our findings provide a new design approach for protein-based liquid crystalline elastomers and the self-assembly of nanolattices.


Assuntos
Cristais Líquidos , Tubarões , Animais , Colágeno , Humanos , Cristais Líquidos/química , Transição de Fase , Proteômica
5.
Acta Biomater ; 136: 111-123, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34551327

RESUMO

A short bioinspired octapeptide, GV8, can self-assemble under mild conditions into biodegradable supramolecular physical hydrogels with high storage modulus and good biocompatibility. GV8 hydrogels can encapsulate both single or multiple macromolecular protein-based therapeutics in a simple one-pot formulation manner, making it a promising candidate to address challenges faced by existing synthetic polymer or peptide hydrogels with complex gelation and drug-encapsulation processes. Alongside its versatility, the hydrogel exhibits concentration-dependent storage modulus and controlled drug-release action. We demonstrate that GV8 hydrogels loaded with adipose-derived mesenchymal stem cells (ADMSC) secretome remain mechanically robust, and exhibit promising potential for wound healing applications by preserving secretome activity while maintaining a constant supply of ADMSC secretome to promote epithelial cell migration. Overall, our work highlights the potential of GV8 peptide hydrogel as a versatile and safe carrier for encapsulation and delivery of macromolecular therapeutics. STATEMENT OF SIGNIFICANCE: Supramolecular peptide hydrogels are a popular choice for protein-based macromolecular therapeutics delivery; however, despite the development of abundant hydrogel systems, several challenges limit their adaptability and practical applications. GV8 short peptide hydrogel circumvents these drawbacks and demonstrates the ability to function as a versatile growth factor (GF) encapsulant. It can encapsulate precise concentrations of complex adipose-derived mesenchymal stem cells secretome mixtures with a one-pot formulation approach and perform controlled release of GFs with preserved activity without compromising the self-assembly and mechanical properties of the hydrogel's supramolecular network. The significance of GV8 hydrogel lies in its gelation simplicity and versatility to encapsulate and deliver macromolecular therapeutics, thus representing a promising biomaterial for regenerative medicine applications.


Assuntos
Hidrogéis , Secretoma , Preparações de Ação Retardada , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos
6.
Adv Sci (Weinh) ; 6(21): 1901173, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31728282

RESUMO

Biological gels generally require polymeric chains that produce long-lived physical entanglements. Low molecular weight colloids offer an alternative to macromolecular gels, but often require ad-hoc synthetic procedures. Here, a short biomimetic peptide composed of eight amino acid residues derived from squid sucker ring teeth proteins is demonstrated to form hydrogel in water without any cross-linking agent or chemical modification and exhibits a stiffness on par with the stiffest peptide hydrogels. Combining solution and solid-state NMR, circular dichroism, infrared spectroscopy, and X-ray scattering, the peptide is shown to form a supramolecular, semiflexible gel assembled from unusual right-handed 310-helices stabilized in solution by π-π stacking. During gelation, the 310-helices undergo conformational transition into antiparallel ß-sheets with formation of new interpeptide hydrophobic interactions, and molecular dynamic simulations corroborate stabilization by cross ß-sheet oligomerization. The current study broadens the range of secondary structures available to create supramolecular hydrogels, and introduces 310-helices as transient building blocks for gelation via a 310-to-ß-sheet conformational transition.

7.
Biomacromolecules ; 20(4): 1709-1718, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30856330

RESUMO

Positive strand RNA viruses replicate in specialized niches called membranous web within the cytoplasm of host cells. These virus replication organelles sequester viral proteins, RNA, and a variety of host factors within a fluid, amorphous matrix of clusters of endoplasmic reticulum (ER) derived vesicles. They are thought to form by the actions of a nonstructural viral protein NS4B, which remodels the ER and produces dense lipid-protein condensates. Here, we used in vitro reconstitution to identify the minimal components and elucidate physical mechanisms driving the web formation. We found that the N-terminal amphipathic domain of NS4B (peptide 4BAH2) and phospholipid vesicles (∼100-200 nm in diameter) were sufficient to produce a gel-like, viscoelastic condensate. This condensate coexists with the surrounding aqueous phase and affords rapid exchange of molecules. Together, it recapitulates the essential properties of the virus-induced membranous web. Our data support a novel phase separation mechanism in which phospholipid vesicles provide a supramolecular template spatially organizing multiple self-associating peptides thereby generating programmable multivalency de novo and inducing macroscopic phase separation.


Assuntos
Hepacivirus/química , Membranas Artificiais , Peptídeos/química , Transição de Fase , Proteínas não Estruturais Virais/química , Domínios Proteicos
8.
ACS Nano ; 12(9): 9152-9161, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30106557

RESUMO

Squid sucker ring teeth (SRT) have emerged as a promising protein-only, thermoplastic biopolymer with an increasing number of biomedical and engineering applications demonstrated in recent years. SRT is a supra-molecular network whereby a flexible, amorphous matrix is mechanically reinforced by nanoconfined ß-sheets. The building blocks for the SRT network are a family of suckerin proteins that share a common block copolymer architecture consisting of amorphous domains intervened by smaller, ß-sheet forming modules. Recent studies have identified the peptide A1H1 (peptide sequence AATAVSHTTHHA) as one of the most abundant ß-sheet forming domains within the suckerin protein family. However, we still have little understanding of the assembly mechanisms by which the A1H1 peptide may assemble into its functional load-bearing domains. In this study, we conduct a detailed self-assembly study of A1H1 and show that the peptide undergoes ß-strands-driven elongation into amyloid-like fibrils with a rich polymorphism. The nanostructure of the fibrils was elucidated by small and wide-angle X-ray scattering (SAXS and WAXS) and atomic force microscopy (AFM). The presence of His-rich and Ala-rich segments results in an amphiphilic behavior and drives its assembly into fibrillar supramolecular chiral aggregates with helical ribbon configuration in solution, with the His-rich region exposed to the solvent molecules. Upon increase in concentration, the fibrils undergo gel formation, while preserving the same mesoscopic features. This complex phase behavior suggests that the repeat peptide modules of suckerins may be manipulated beyond their native biological environment to produce a wider variety of self-assembled amyloid-like nanostructures.


Assuntos
Proteínas Amiloidogênicas/química , Materiais Biomiméticos/química , Nanoestruturas/química , Substâncias Macromoleculares/química , Microscopia de Força Atômica , Tamanho da Partícula , Conformação Proteica em Folha beta , Propriedades de Superfície
9.
Biomacromolecules ; 18(12): 4240-4248, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29112414

RESUMO

We present the self-assembly of fibers formed from a peptide sequence (A1H1) derived from suckerin proteins of squid sucker ring teeth (SRT). SRT are protein-only biopolymers with an unconventional set of physicochemical and mechanical properties including high elastic modulus coupled with thermoplastic behavior. We have identified a conserved peptide building block from suckerins that possess the ability to assemble into materials with similar mechanical properties as the native SRT. A1H1 displays amphiphilic characteristics and self-assembles from the bottom-up into mm-scale fibers initiated by the addition of a polar aprotic solvent. A1H1 fibers are thermally resistant up to 239 °C, coupled with an elastic modulus of ∼7.7 GPa, which can be explained by the tight packing of ß-sheet-enriched crystalline building blocks as identified by wide-angle X-ray scattering (WAXS), with intersheet and interstrand distances of 5.37 and 4.38 Å, respectively. A compact packing of the peptides at their Ala-rich terminals within the fibers was confirmed from molecular dynamics simulations, and we propose a hierarchical model of fiber assembly of the mature peptide fiber.


Assuntos
Amiloide/química , Decapodiformes/química , Peptídeos/química , Sequência de Aminoácidos , Proteínas Amiloidogênicas/química , Animais , Biomimética/métodos , Simulação de Dinâmica Molecular , Oligopeptídeos/química , Estrutura Secundária de Proteína
10.
ACS Biomater Sci Eng ; 3(5): 680-693, 2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-33440495

RESUMO

The arms and tentacles of Decapodiform cephalopods (squids and cuttlefish) are lined with suckers, each of which contains embedded sucker ring teeth (SRT), which are used by the animal for prey capture and handling. SRT exhibit intriguing physicochemical and thermomechanical characteristics that have so far not been observed in other protein-based biomaterials. Notably, despite their comparatively high mechanical properties, SRT are almost fully soluble in chaotropic solvents and can be readily reconstituted after solvent evaporation into three-dimensional structures. SRT also exhibit thermoplastic characteristics: they can be melted and reshaped multiple times with no-or only minimal-loss of mechanical performance postprocessing. Intrigued by these unusual material characteristics, in recent years, we have conducted in-depth fundamental studies to unveil structure/property relationships of SRT from the molecular (genetic) level to the macroscopic scale. These investigations have demonstrated that SRT are entirely assembled from a protein family called "suckerins" that self-assemble into semicrystalline polymer infinite networks. Suckerins are block copolymers at the molecular level, whose closest analogy appears to be silk fibroins, although significant differences exist between these two protein families. Parallel to these studies, there have been efforts to mimic and engineer suckerins by protein engineering and to demonstrate potential applications through proof-of-concept studies, with a focus on the biomedical field. Both fundamental aspects and emerging applications are presented in this short review. Given the rather unusual source of this model structure, we start by a brief historical account of SRT and suckerin discovery.

11.
Acta Biomater ; 46: 41-54, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27693688

RESUMO

The hard sucker ring teeth (SRT) from decapodiforme cephalopods, which are located inside the sucker cups lining the arms and tentacles of these species, have recently emerged as a unique model structure for biomimetic structural biopolymers. SRT are entirely composed of modular, block co-polymer-like proteins that self-assemble into a large supramolecular network. In order to unveil the molecular principles behind SRT's self-assembly and robustness, we describe a combinatorial screening assay that maps the molecular-scale interactions between the most abundant modular peptide blocks of suckerin proteins. By selecting prominent interaction hotspots from this assay, we identified four peptides that exhibited the strongest homo-peptidic interactions, and conducted further in-depth biophysical characterizations complemented by molecular dynamic (MD) simulations to investigate the nature of these interactions. Circular Dichroism (CD) revealed conformations that transitioned from semi-extended poly-proline II (PII) towards ß-sheet structure. The peptides spontaneously self-assembled into microfibers enriched with cross ß-structures, as evidenced by Fourier-Transform Infrared Spectroscopy (FTIR) and Congo red staining. Nuclear Magnetic Resonance (NMR) experiments identified the residues involved in the hydrogen-bonded network and demonstrated that these self-assembled ß-sheet-based fibers exhibit high protection factors that bear resemblance to amyloids. The high stability of the ß-sheet network and an amyloid-like model of fibril assembly were supported by MD simulations. The work sheds light on how Nature has evolved modular sequence design for the self-assembly of mechanically robust functional materials, and expands our biomolecular toolkit to prepare load-bearing biomaterials from protein-based block co-polymers and self-assembled peptides. STATEMENT OF SIGNIFICANCE: The sucker ring teeth (SRT) located on the arms and tentacles of cephalopods represent as a very promising protein-based biopolymer with the potential to rival silk in biomedical and engineering applications. SRT are made of modular, block co-polymer like proteins (suckerins), which assemble into a semicrystalline polymer reinforced by nano-confined ß-sheets, resulting in a supramolecular network with mechanical properties that match those of the strongest engineering polymers. In this study, we aimed to understand the molecular mechanisms behind SRT's self-assembly and robustness. The most abundant modular peptidic blocks of suckerin proteins were studied by various spectroscopic methods, which demonstrate that SRT peptides form amyloid-like cross-ß structures.


Assuntos
Amiloide/química , Peptídeos/química , Temperatura , Dente/química , Sequência de Aminoácidos , Animais , Dicroísmo Circular , Decapodiformes , Difusão Dinâmica da Luz , Simulação de Dinâmica Molecular , Biblioteca de Peptídeos , Estrutura Secundária de Proteína , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Org Biomol Chem ; 10(11): 2227-30, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22331171

RESUMO

It has been demonstrated in our studies that the intrinsic curvature of DNA can be easily interrupted by low concentrations of chloroquine and ethidium bromide. In addition, the changes of DNA curvature caused by varying the concentration of these two DNA intercalators can be readily verified through using an atomic force microscope.


Assuntos
DNA/ultraestrutura , Plasmídeos/ultraestrutura , DNA/química , Etídio/química , Microscopia de Força Atômica , Plasmídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA