Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Immunology ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720202

RESUMO

Our newly developed menthyl esters of valine and isoleucine exhibit anti-inflammatory properties beyond those of the well-known menthol in macrophages stimulated by lipopolysaccharide (LPS) and in a mouse model of colitis induced by sodium dextran sulfate. Unlike menthol, which acts primarily through the cold-sensitive TRPM8 channel, these menthyl esters displayed unique mechanisms that operate independently of this receptor. They readily penetrated target cells and efficiently suppressed LPS-stimulated tumour necrosis factor-alpha (Tnf) expression mediated by liver X receptor (LXR), a key nuclear receptor that regulates intracellular cholesterol and lipid balance. The menthyl esters showed affinity for LXR and enhanced the transcriptional activity through their non-competitive and potentially synergistic agonistic effect. This effect can be attributed to the crucial involvement of SCD1, an enzyme regulated by LXR, which is central to lipid metabolism and plays a key role in the anti-inflammatory response. In addition, we discovered that the menthyl esters showed remarkable efficacy in suppressing adipogenesis in 3T3-L1 adipocytes at the mitotic clonal expansion stage in an LXR-independent manner as well as in mice subjected to diet-induced obesity. These multiple capabilities of our compounds establish them as formidable allies in the fight against inflammation and obesity, paving the way for a range of potential therapeutic applications.

2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732124

RESUMO

Oxytocin, a significant pleiotropic neuropeptide, regulates psychological stress adaptation and social communication, as well as peripheral actions, such as uterine contraction and milk ejection. Recently, a Japanese Kampo medicine called Kamikihito (KKT) has been reported to stimulate oxytocin neurons to induce oxytocin secretion. Two-pore-domain potassium channels (K2P) regulate the resting potential of excitable cells, and their inhibition results in accelerated depolarization that elicits neuronal and endocrine cell activation. We assessed the effects of KKT and 14 of its components on a specific K2P, the potassium channel subfamily K member 2 (TREK-1), which is predominantly expressed in oxytocin neurons in the central nervous system (CNS). KKT inhibited the activity of TREK-1 induced via the channel activator ML335. Six of the 14 components of KKT inhibited TREK-1 activity. Additionally, we identified that 22 of the 41 compounds in the six components exhibited TREK-1 inhibitory effects. In summary, several compounds included in KKT partially activated oxytocin neurons by inhibiting TREK-1. The pharmacological effects of KKT, including antistress effects, may be partially mediated through the oxytocin pathway.


Assuntos
Neurônios , Ocitocina , Canais de Potássio de Domínios Poros em Tandem , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Ocitocina/farmacologia , Ocitocina/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Animais , Humanos , Medicina Kampo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Camundongos
4.
Yakugaku Zasshi ; 144(4): 411-417, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38556316

RESUMO

Long-term caloric restriction (CR) is an effective intervention that improves whole-body metabolism, suppresses age-related pathophysiology, and extends lifespan. Although the beneficial effects of caloric restriction mediated by growth hormone/insulin-like growth factor-1 (GH/IGF-1) have been extensively studied, the mechanisms independent of GH/IGF-1 remain largely unknown. In this review, we focus on these GH/IGF-1-independent mechanisms, with a particular emphasis on the role of sterol regulatory element-binding protein 1c (SREBP-1c). CR increases the expression of SREBP-1c through the suppression of leptin signaling and enhances downstream factors involved in fatty acid synthesis in white adipose tissue (WAT). SREBP-1c also directly and indirectly increases the expression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha, a master regulator of mitochondrial biogenesis, leading to an increase in the number of mitochondria. Furthermore, SREBP-1c elevates expression of mitochondrial intermediate peptidase, which contributes to improving mitochondrial quality through the processing of sirtuin 3 into its mature form. Thus, it appears that CR exerts beneficial effects by modulating mitochondrial quantity and quality in WAT in a GH/IGF-1 signal-independent manner.


Assuntos
Fator de Crescimento Insulin-Like I , Longevidade , Fator de Crescimento Insulin-Like I/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Tecido Adiposo Branco/metabolismo
5.
Sci Rep ; 13(1): 22990, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38151567

RESUMO

White adipose tissue (WAT) is critical for whole-body energy metabolism, and its dysfunction leads to various metabolic disorders. In recent years, many studies have suggested that impaired mitochondria may contribute to obesity-related decline in adipose tissue function, but the detailed mechanisms remain unclear. To investigate these mechanisms, we carried out a comprehensive analysis of WAT from mice with diet-induced obesity. We discovered the transcription factor Parkin interactive substrate (PARIS or ZNF746), which suppresses the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a key regulator of mitochondrial biogenesis, to be accumulated in adipose progenitor cells from obese mice. Furthermore, we demonstrated that 3T3-L1 preadipocytes with overexpression of PARIS protein exhibited decreased mitochondrial biogenesis and impaired adipogenesis. Our results suggest that the accumulation of PARIS protein may be a novel component in the pathogenesis of obesity-related dysfunction in WAT.


Assuntos
Adipogenia , Biogênese de Organelas , Animais , Camundongos , Células 3T3-L1 , Tecido Adiposo Branco/metabolismo , Obesidade/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo
6.
Pathol Int ; 73(10): 479-489, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37606202

RESUMO

Long-term caloric restriction is a conventional and reproducible dietary intervention to improve whole body metabolism, suppress age-related pathophysiology, and extend lifespan. The beneficial actions of caloric restriction are widely accepted to be regulated in both growth hormone/insulin-like growth factor 1-dependent and -independent manners. Although growth hormone/insulin-like growth factor 1-dependent regulatory mechanisms are well described, those occurring independent of growth hormone/insulin-like growth factor 1 are poorly understood. In this review, we focus on molecular mechanisms of caloric restriction regulated in a growth hormone/insulin-like growth factor 1-independent manner. Caloric restriction increases mitochondrial quantity and improves mitochondrial quality by activating an axis involving sterol regulatory element binding protein-c/peroxisome proliferator-activated receptor γ coactivator-1α/mitochondrial intermediate peptidase in a growth hormone/insulin-like growth factor 1-independent manner, particularly in white adipose tissue. Fibroblast growth factor 21 is also involved in this axis. Moreover, the axis may be regulated by lower leptin signaling. Thus, caloric restriction appears to induce beneficial actions partially by regulating mitochondrial quantity and quality in white adipose tissue in a growth hormone/insulin-like growth factor 1-independent manner.


Assuntos
Fator de Crescimento Insulin-Like I , Longevidade , Humanos , Tecido Adiposo Branco/metabolismo , Restrição Calórica , Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Longevidade/fisiologia , Controle de Qualidade
7.
FEBS Open Bio ; 13(6): 1086-1094, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37032433

RESUMO

Obesity is a metabolic disorder associated with many diseases. WW domain-containing E3 ubiquitin protein ligase 1 (WWP1) is a HECT-type E3 ubiquitin ligase involved in several diseases. Recently, we found that the level of WWP1 is increased in white adipose tissue in a mouse model of obesity and that obese Wwp1 knockout (KO) mice exhibit improved whole-body glucose metabolism. Here, to determine which insulin-sensitive tissues contribute to this phenotype, we investigated the levels of several insulin signaling markers in white adipose tissue, liver, and skeletal muscle of Wwp1 KO mice, which were fed a normal or high-fat diet and transiently treated with insulin. In obese Wwp1 KO mice, phosphorylated Akt levels were increased in the liver but not in white adipose tissue or skeletal muscle. Moreover, the weight and triglyceride content of the liver of obese Wwp1 KO mice were decreased. These results suggest that systemic deletion of WWP1 improves glucose metabolism via enhanced hepatic insulin signaling and suppressed hepatic fat accumulation. In summary, WWP1 participates in obesity-related metabolic dysfunction and pathologies related to hepatic steatosis via suppressed insulin signaling.


Assuntos
Resistência à Insulina , Animais , Camundongos , Resistência à Insulina/genética , Camundongos Obesos , Triglicerídeos/metabolismo , Fígado/metabolismo , Obesidade/metabolismo , Insulina/metabolismo , Glucose/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
8.
Exp Gerontol ; 164: 111821, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35504483

RESUMO

Adiponectin (APN), a major adipokine secreted from white adipose tissue, prevents inflammation and improves insulin sensitivity. APN exists as distinct multimeric complexes with different physiological activities, including low, middle and high molecular weight complexes (LMW, MMW and HMW, respectively) in peripheral blood. Caloric restriction (CR), an intervention that suppresses aging-related pathophysiological changes and extends lifespan, reportedly elevates the expression levels of Adipoq (encoding APN) and total circulating APN. Circulating APN levels have generally been measured using ELISA, but ELISA fails to directly and separately detect APN multimeric complexes other than HMW. Here, we aimed to evaluate the association of aging and CR with oligomerization of APN in rodent models, using immunoblotting to distinguish multimeric complexes based on molecular sizes. In mice, aging elevated plasma levels of HMW and MMW, while CR only elevated HMW. In contrast, LMW and monomeric APN levels were unchanged, suggesting that aging and CR can induce the assembly of APN oligomers in adipocytes. In rats, plasma levels of all multimeric complexes and monomeric APN were not significantly changed by aging or CR. Collectively, levels of circulating APN in mice were consistent with previous findings, whereas those of rats were partially inconsistent, probably because of experimental differences. Moreover, aging reduced Adipoq mRNA levels in mice and rats, while CR prevented this reduction only in rats. Such a discrepancy between Adipoq expression and circulating APN levels may be attributed to proteasomal regulation in adipocytes or tissue accumulation of APN. In conclusion, this study provides new findings of aging- and CR-related changes of each APN multimeric complex and underscores the importance of qualitative approaches for a greater understanding of physiological changes in APN.


Assuntos
Adiponectina , Resistência à Insulina , Envelhecimento , Animais , Restrição Calórica , Immunoblotting , Camundongos , Sobrepeso , Ratos
9.
PLoS One ; 17(2): e0262892, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35157707

RESUMO

Mesenchymal stem cells (MSCs), which are isolated from adipose tissue (AD-MSCs), umbilical cord (UC-MSCs), or bone marrow, have therapeutic potential including anti-inflammatory and immunomodulatory activities. It was recently reported that MSCs are also effective as a therapeutic treatment for neuropathic pain, although the underlying mechanisms have yet to be resolved. Therefore, in this study, we investigated the effects of human AD- and UC-MSCs on neuropathic pain and its mechanisms using rat models of partial sciatic nerve ligation (PSNL). AD- or UC-MSCs were intravenously administered 4 days after PSNL. Antinociceptive effects were then evaluated using the von Frey and weight-bearing tests. We found that, 3-9 days after the administration of AD- or UC-MSCs to PSNL-exposed rats, both the mechanical threshold and differences in weight-bearing of the right and left hind paws were significantly improved. To reveal the potential underlying antinociceptive mechanisms of MSCs, the levels of activation transcription factor 3- and ionized calcium-binding adapter molecule 1-positive cells were measured by immunohistochemical analysis. AD- and UC-MSCs significantly decreased the levels of these proteins that were induced by PSNL in the dorsal root ganglia. Additionally, UC-MSC significantly improved the PSNL-induced decrease in the myelin basic protein level in the sciatic nerve, indicating that UC-MSC reversed demyelination of the sciatic nerve produced by PSNL. These data suggest that AD- and UC-MSCs may help in the recovery of neuropathic pain via the different regulation; AD-MSCs exhibited their effects via suppressed neuronal damage and anti-inflammatory actions, while UC-MSCs exhibited their effects via suppressed neuronal damage, anti-inflammatory actions and remyelination.


Assuntos
Transplante de Células-Tronco Mesenquimais , Neuralgia/terapia , Neurônios/metabolismo , Fator 3 Ativador da Transcrição/metabolismo , Tecido Adiposo/citologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Gânglios Espinais/imunologia , Gânglios Espinais/metabolismo , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Proteínas dos Microfilamentos/metabolismo , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Nervo Isquiático/cirurgia , Cordão Umbilical/citologia
10.
Int J Mol Sci ; 23(3)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35163722

RESUMO

Cholesterol is an essential lipid in vertebrates, but excess blood cholesterol promotes atherosclerosis. In the liver, cholesterol is metabolized to bile acids by cytochrome P450, family 7, subfamily a, polypeptide 1 (CYP7A1), the transcription of which is negatively regulated by the ERK pathway. Fibroblast growth factor 21 (FGF21), a hepatokine, induces ERK phosphorylation and suppresses Cyp7a1 transcription. Taurine, a sulfur-containing amino acid, reportedly promotes cholesterol metabolism and lowers blood and hepatic cholesterol levels. However, the influence of long-term feeding of taurine on cholesterol levels and metabolism remains unclear. Here, to evaluate the more chronic effects of taurine on cholesterol levels, we analyzed mice fed a taurine-rich diet for 14-16 weeks. Long-term feeding of taurine lowered plasma cholesterol and bile acids without significantly changing other metabolic parameters, but hardly affected these levels in the liver. Moreover, taurine upregulated Cyp7a1 levels, while downregulated phosphorylated ERK and Fgf21 levels in the liver. Likewise, taurine-treated Hepa1-6 cells, a mouse hepatocyte line, exhibited downregulated Fgf21 levels and upregulated promoter activity of Cyp7a1. These results indicate that taurine promotes cholesterol metabolism by suppressing the FGF21/ERK pathway followed by upregulating Cyp7a1 expression. Collectively, this study shows that long-term feeding of taurine lowers both plasma cholesterol and bile acids, reinforcing that taurine effectively prevents hypercholesterolemia.


Assuntos
Ácidos e Sais Biliares , Taurina , Animais , Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Colesterol na Dieta/metabolismo , Dieta , Fígado/metabolismo , Camundongos , Taurina/metabolismo , Taurina/farmacologia
11.
J Radiat Res ; 63(1): 19-29, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34738103

RESUMO

Malignant pleural mesothelioma (MPM) is a highly malignant disease that develops after asbestos exposure. Although the number of MPM cases is predicted to increase, no effective standard therapies have been established. The novel radiosensitizer α-sulfoquinovosyl-acylpropanediol (SQAP) enhances the effects of γ-radiation in human lung and prostate cancer cell lines and in animal models. In this study, we explored the radiosensitizing effect of SQAP and its mechanisms in MPM. The human MPM cell lines MSTO-211H and MESO-4 were implanted subcutaneously into the backs and thoracic cavities of immunodeficient KSN/Slc mice, then 2 mg/kg SQAP was intravenously administered with or without irradiation with a total body dose of 8 Gy. In both the orthotopic and ectopic xenograft murine models, the combination of irradiation plus SQAP delayed the implanted human MSTO-211H tumor growth. The analysis of the changes in the relative tumor volume of the MSTO-211H indicated a statistically significant difference after 8 Gy total body combined with 2 mg/kg SQAP, compared to both the untreated control (P = 0.0127) and the radiation treatment alone (P = 0.0171). After the treatment in each case, immunostaining of the harvested tumors revealed decreased cell proliferation, increased apoptosis and normalization of tumor blood vessels in the SQAP- and irradiation-treated group. Furthermore, hypoxia-inducible factor (HIF) 1 mRNA and protein expression were decreased, indicating reoxygenation in this group. In conclusion, SQAP improved hypoxic conditions in tumor tissue and may elicit a radiosensitizing effect in malignant mesothelioma models.


Assuntos
Antineoplásicos , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Humanos , Masculino , Mesotelioma/tratamento farmacológico , Mesotelioma/metabolismo , Mesotelioma/radioterapia , Camundongos , Camundongos Nus , Neoplasias Pleurais/tratamento farmacológico , Neoplasias Pleurais/metabolismo , Neoplasias Pleurais/radioterapia , Tolerância a Radiação
12.
Am J Cancer Res ; 11(9): 4364-4379, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659892

RESUMO

Tenascin-C is upregulated during inflammation and tumorigenesis, and its expression level is correlated with a poor prognosis in several malignancies. Nevertheless, the substantial role of tenascin-C in cancer progression is poorly understood. Previously, we found that a peptide derived from tenascin-C, termed TNIIIA2, acts directly on tumor cells to activate ß1-integrin and induce malignant progression. Here, we show that ß1-integrin activation by TNIIIA2 in human fibroblasts indirectly contributes to cancer progression through the induction of cellular senescence. Prolonged treatment of fibroblasts with TNIIIA2 induced cellular senescence, as characterized by the suppression of cell growth and the induction of senescence-associated-ß-galactosidase and p16INK4a expression. The production of reactive oxygen species and subsequent DNA damage were responsible for the TNIIIA2-induced senescence of fibroblasts. Interestingly, peptide FNIII14, which inactivates ß1-integrin, inhibited fibroblast senescence induced not only by TNIIIA2 but also by H2O2, suggesting that ß1-integrin activation plays a critical role in the induction of senescence in fibroblasts. Moreover, TNIIIA2-induced senescent fibroblasts secreted heparin-binding epidermal growth factor-like growth factor (HB-EGF), which caused preneoplastic epithelial HaCaT cells to acquire malignant properties, including colony-forming and focus-forming abilities. Thus, our study demonstrates that tenascin-C-derived peptide TNIIIA2 induces cellular senescence in fibroblasts through ß1-integrin activation, causing cancer progression via the secretion of humoral factors such as HB-EGF.

13.
Cells ; 10(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34685631

RESUMO

Oxytocin (OT) influences various physiological functions such as uterine contractions, maternal/social behavior, and analgesia. Opioid signaling pathways are involved in one of the analgesic mechanisms of OT. We previously showed that OT acts as a positive allosteric modulator (PAM) and enhances µ-opioid receptor (MOR) activity. In this study, which focused on other opioid receptor (OR) subtypes, we investigated whether OT influences opioid signaling pathways as a PAM for δ-OR (DOR) or κ-OR (KOR) using human embryonic kidney-293 cells expressing human DOR or KOR, respectively. The CellKeyTM results showed that OT enhanced impedance induced by endogenous/exogenous KOR agonists on KOR-expressing cells. OT did not affect DOR activity induced by endogenous/exogenous DOR agonists. OT potentiated the KOR agonist-induced Gi/o protein-mediated decrease in intracellular cAMP, but did not affect the increase in KOR internalization caused by the KOR agonists dynorphin A and (-)-U-50488 hydrochloride (U50488). OT did not bind to KOR orthosteric binding sites and did not affect the binding affinities of dynorphin A and U50488 for KOR. These results suggest that OT is a PAM of KOR and MOR and enhances G protein signaling without affecting ß-arrestin signaling. Thus, OT has potential as a specific signaling-biased PAM of KOR.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Ocitocina/farmacologia , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/metabolismo , Transdução de Sinais , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Regulação Alostérica/efeitos dos fármacos , Animais , Sítios de Ligação , Células CHO , Cricetulus , AMP Cíclico/metabolismo , Diprenorfina/farmacologia , Dinorfinas/farmacologia , Impedância Elétrica , Endocitose/efeitos dos fármacos , Células HEK293 , Humanos , Concentração Inibidora 50 , Receptores Opioides delta/agonistas , Receptores Opioides kappa/agonistas , Transdução de Sinais/efeitos dos fármacos
14.
Exp Gerontol ; 154: 111519, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34416335

RESUMO

Aging causes loss of skeletal muscle mass and function, which is called sarcopenia. While sarcopenia impairs the quality of life of older adults and is a major factor in long-term hospitalization, its detailed pathogenic mechanism and preventive measures remain to be identified. Caloric restriction (CR) suppresses age-related physiological and pathological changes in many species and prolongs the average and healthy life expectancy. It has recently been reported that CR suppresses the onset of sarcopenia; however, few studies have analyzed the effects of long-term CR on age-related skeletal muscle atrophy. Thus, we investigated the aging and CR effects on soleus (SOL) muscles of 9-, 24-, and 29-month-old ad libitum-fed rats (9AL, 24AL, and 29AL, respectively) and of 29-month-old CR (29CR) rats. The total muscle cross sectional area (mCSA) of the entire SOL muscle significantly decreased in the 29AL rats, but not in the 24AL rats, compared with the 9AL rats. SOL muscle of the 29AL rats exhibited marked muscle fiber atrophy and increases in the number of muscle fibers with a central nucleus, in fibrosis, and in adipocyte infiltration. Additionally, although the decrease in the single muscle fiber cross-sectional area (fCSA) and the muscle fibers' number occurred in both slow-type and fast-type muscle fibers, the degree of atrophy was more remarkable in the fast-type fibers. However, CR suppressed the muscle fiber atrophy observed in the 29AL rats' SOL muscle by preserving the mCSA and the number of muscle fibers that declined with aging, and by decreasing the number of muscle fibers with a central nucleus, fibrosis and denervated muscle fibers. Overall, these results revealed that advanced aging separately reduces the number and fCSA of each muscle fiber type, but long-term CR can ameliorate this age-related sarcopenic muscle atrophy.


Assuntos
Restrição Calórica , Qualidade de Vida , Envelhecimento , Animais , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Atrofia Muscular/prevenção & controle , Ratos
15.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199596

RESUMO

Peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α) regulates mitochondrial DNA replication and mitochondrial gene expression by interacting with several transcription factors. White adipose tissue (WAT) mainly comprises adipocytes that store triglycerides as an energy resource and secrete adipokines. The characteristics of WAT vary in response to systemic and chronic metabolic alterations, including obesity or caloric restriction. Despite a small amount of mitochondria in white adipocytes, accumulated evidence suggests that mitochondria are strongly related to adipocyte-specific functions, such as adipogenesis and lipogenesis, as well as oxidative metabolism for energy supply. Therefore, PGC-1α is expected to play an important role in WAT. In this review, we provide an overview of the involvement of mitochondria and PGC-1α with obesity- and caloric restriction-related physiological changes in adipocytes and WAT.


Assuntos
Tecido Adiposo Branco/metabolismo , Mitocôndrias/genética , Obesidade/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Adipócitos/metabolismo , Tecido Adiposo Branco/fisiologia , Restrição Calórica , Humanos , Lipogênese/genética , Mitocôndrias/metabolismo , Obesidade/patologia , Biogênese de Organelas
16.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799894

RESUMO

The mitochondrial unfolded protein response (UPRmt) is a stress response mediated by the expression of genes such as chaperones, proteases, and mitokines to maintain mitochondrial proteostasis. Certain genetically modified mice, which defect mitochondrial proteins specifically in adipocytes, developed atrophy of the white adipose tissue, resisted diet-induced obesity, and had altered whole-body metabolism. UPRmt, which has beneficial functions for living organisms, is termed "mitohormesis", but its specific characteristics and detailed regulatory mechanism have not been elucidated to date. In this review, we discuss the function of UPRmt in adipose atrophy (lipoatrophy), whole-body metabolism, and lifespan based on the concept of mitohormesis.


Assuntos
Tecido Adiposo Branco/metabolismo , Lipodistrofia/metabolismo , Longevidade , Mitocôndrias/metabolismo , Resposta a Proteínas não Dobradas , Animais , Humanos , Camundongos , Proteínas Mitocondriais/metabolismo , Proteostase
17.
FEBS Open Bio ; 11(1): 185-194, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33277792

RESUMO

Adipocytes, which comprise the majority of white adipose tissue (WAT), are involved in obesity-related pathology via various mechanisms, including disturbed lysosomal enzymatic activity and accumulation of oxidative stress. Sequestosome 1 (SQSTM1/p62) is an autophagy marker that participates in antioxidative responses via the activation of nuclear factor erythroid-derived 2-like 2 (NRF2). Trehalose is a non-reducing disaccharide reported to suppress adipocyte hypertrophy in obese mice and improve glucose tolerance in humans. We recently revealed that trehalose increases SQSTM1 levels and enhances antioxidative capacity in hepatocytes. Here, to further evaluate the mechanism behind the beneficial effects of trehalose on metabolism, we examined SQSTM1 levels, autophagy, and oxidative stress in trehalose-treated adipocytes. We initially confirmed that trehalose increases SQSTM1 transcription and protein levels without affecting autophagy in adipocytes. Trehalose also elevated transcription of several lysosomal genes and the activity of cathepsin L, a lysosomal enzyme, independently of the transcription factor EB. In agreement with our data from hepatocytes, trehalose induced the nuclear translocation of NRF2 and the transcription of its downstream antioxidative genes, resulting in reduced cellular reactive oxygen species levels. Moreover, some cellular trehalose was detected in trehalose-treated adipocytes, implying that extracellular trehalose is taken into cells. These observations reveal the mechanism behind the beneficial effects of trehalose on metabolism and suggest its potential for preventing or treating obesity-related pathology.


Assuntos
Adipócitos/efeitos dos fármacos , Antioxidantes/farmacologia , Obesidade/tratamento farmacológico , Proteína Sequestossoma-1/metabolismo , Trealose/farmacologia , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Antioxidantes/uso terapêutico , Autofagia/efeitos dos fármacos , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Obesidade/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Trealose/uso terapêutico
18.
Am J Cancer Res ; 10(11): 3990-4004, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33294281

RESUMO

Cell migration is a highly coordinated process that involves not only integrin-mediated adhesion but also de-adhesion. We previously found that a cryptic de-adhesive site within fibronectin molecule, termed FNIII14, weakens cell adhesion to the extracellular matrix by inactivating ß1-integrins. Surprisingly, eukaryotic translation elongation factor-1A (eEF1A), an essential factor during protein biosynthesis, was identified as a membrane receptor that mediates the de-adhesive effect of FNIII14. Here, we demonstrate that FNIII14-mediated de-adhesion causes enhanced migration and invasion in two types of highly invasive/metastatic cancer cells, resulting in the initiation of metastasis. Both in vitro migration and invasion of highly invasive human melanoma cell line, Mum2B, were inhibited by a matrix metalloproteinase (MMP)-2/9 inhibitor or a function-blocking antibody against FNIII14 (anti-FNIII14 Ab), suggesting that MMP-mediated exposure of the cryptic de-adhesive site FNIII14 was responsible for Mum2B cell migration and invasion. The MMP-induced FNIII14 exposure was also shown to be functional in the migration and invasion of highly metastatic mouse breast cancer cell line 4T1. Overexpression and knockdown experiments of eEF1A in Mum2B cells revealed that the migration and invasion were dependent on the membrane levels of eEF1A. In vivo experiments using tumor xenograft mouse models derived from Mum2B and 4T1 cell lines showed that the anti-FNIII14 Ab has a significant anti-metastatic effect. Thus, these results provide novel insights into the regulation of cancer cell migration and invasion and suggest promising targets for anti-metastasis strategies.

20.
Biology (Basel) ; 9(8)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32823990

RESUMO

A dye exclusion test (DET) was performed to determine the viability of human breast cancer cells MCF-7, using natural food pigments as compared with trypan blue (TB), a typical synthetic dye for DET known to exhibit teratogenicity and cytotoxicity. We demonstrated that Monascus pigment (MP) is noninvasive to living cells and can effectively stain only dead cells. This study is the first verification of the applicability of MP to cancer cells. The appropriate MP concentration was 0.4% (0.02% as the concentration of pure MP) and all the dead cells were stained within 10 min. We found that the cell proliferation or the reduced nicotinamide adenine dinucleotide (NADH) activity of living cells was maintained over 48 h. Although 0.1% TB did not show an increase in dead cells, a marked decrease in NADH activity was confirmed. In addition, even when MP coexisted with cisplatin, staining of dead cells was maintained for 47 h, indicating stability to drugs (reagents). The cost of MP is estimated to be about 1/10 of TB. The fact that MP can be used as a cell viability determination reagent for Euglena and Paramecium, as shown in preceding papers, and also for MCF-7, as shown in this paper, indicates the possibility of application in more cells of different species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...