Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 295(29): 9786-9801, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32434926

RESUMO

Fatty acids play many important roles in cells and also in industrial processes. Furan fatty acids (FuFAs) are present in the lipids of some plant, fish, and microbial species and appear to function as second messengers in pathways that protect cells from membrane-damaging agents. We report here the results of chemical, genetic, and synthetic biology experiments to decipher the biosynthesis of the monomethylated FuFA, methyl 9-(3-methyl-5-pentylfuran-2-yl) nonanoate (9M5-FuFA), and its dimethyl counterpart, methyl 9-(3,4-dimethyl-5-pentylfuran-2-yl) nonanoate (9D5-FuFA), in two α-proteobacteria. Each of the steps in FuFA biosynthesis occurs on pre-existing phospholipid fatty acid chains, and we identified pathway intermediates and the gene products that catalyze 9M5-FuFA and 9D5-FuFA synthesis in Rhodobacter sphaeroides 2.4.1 and Rhodopseudomonas palustris CGA009. One previously unknown pathway intermediate was a methylated diunsaturated fatty acid, (10E,12E)-11-methyloctadeca-10,12-dienoic acid (11Me-10t,12t-18:2), produced from (11E)-methyloctadeca-11-enoic acid (11Me-12t-18:1) by a newly identified fatty acid desaturase, UfaD. We also show that molecular oxygen (O2) is the source of the oxygen atom in the furan ring of 9M5-FuFA, and our findings predict that an O2-derived oxygen atom is incorporated into 9M5-FuFA via a protein, UfaO, that uses the 11Me-10t,12t-18:2 fatty acid phospholipid chain as a substrate. We discovered that R. palustris also contains a SAM-dependent methylase, FufM, that produces 9D5-FuFA from 9M5-FuFA. These results uncover the biochemical sequence of intermediates in a bacterial pathway for 9M5-FuFA and 9D5-FuFA biosynthesis and suggest the existence of homologs of the enzymes identified here that could function in FuFA biosynthesis in other organisms.


Assuntos
Vias Biossintéticas , Ácidos Graxos/biossíntese , Furanos/metabolismo , Rhodobacter sphaeroides/metabolismo , Rodopseudomonas/metabolismo , Ácidos Graxos/genética , Rhodobacter sphaeroides/genética , Rodopseudomonas/genética
2.
Microb Cell Fact ; 17(1): 5, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29329531

RESUMO

BACKGROUND: Gamma valerolactone (GVL) treatment of lignocellulosic bomass is a promising technology for degradation of biomass for biofuel production; however, GVL is toxic to fermentative microbes. Using a combination of chemical genomics with the yeast (Saccharomyces cerevisiae) deletion collection to identify sensitive and resistant mutants, and chemical proteomics to monitor protein abundance in the presence of GVL, we sought to understand the mechanism toxicity and resistance to GVL with the goal of engineering a GVL-tolerant, xylose-fermenting yeast. RESULTS: Chemical genomic profiling of GVL predicted that this chemical affects membranes and membrane-bound processes. We show that GVL causes rapid, dose-dependent cell permeability, and is synergistic with ethanol. Chemical genomic profiling of GVL revealed that deletion of the functionally related enzymes Pad1p and Fdc1p, which act together to decarboxylate cinnamic acid and its derivatives to vinyl forms, increases yeast tolerance to GVL. Further, overexpression of Pad1p sensitizes cells to GVL toxicity. To improve GVL tolerance, we deleted PAD1 and FDC1 in a xylose-fermenting yeast strain. The modified strain exhibited increased anaerobic growth, sugar utilization, and ethanol production in synthetic hydrolysate with 1.5% GVL, and under other conditions. Chemical proteomic profiling of the engineered strain revealed that enzymes involved in ergosterol biosynthesis were more abundant in the presence of GVL compared to the background strain. The engineered GVL strain contained greater amounts of ergosterol than the background strain. CONCLUSIONS: We found that GVL exerts toxicity to yeast by compromising cellular membranes, and that this toxicity is synergistic with ethanol. Deletion of PAD1 and FDC1 conferred GVL resistance to a xylose-fermenting yeast strain by increasing ergosterol accumulation in aerobically grown cells. The GVL-tolerant strain fermented sugars in the presence of GVL levels that were inhibitory to the unmodified strain. This strain represents a xylose fermenting yeast specifically tailored to GVL produced hydrolysates.


Assuntos
Engenharia Genética/métodos , Genômica/métodos , Lactonas/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Biocatálise , Biocombustíveis , Biomassa , Carboxiliases/deficiência , Carboxiliases/genética , Farmacorresistência Fúngica , Ergosterol/metabolismo , Etanol/metabolismo , Etanol/farmacologia , Fermentação , Lignina/metabolismo , Mutação , Proteômica , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo
3.
Cell Rep ; 18(2): 307-313, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28076776

RESUMO

Proper maintenance of mitochondrial activity is essential for metabolic homeostasis. Widespread phosphorylation of mitochondrial proteins may be an important element of this process; yet, little is known about which enzymes control mitochondrial phosphorylation or which phosphosites have functional impact. We investigate these issues by disrupting Ptc7p, a conserved but largely uncharacterized mitochondrial matrix PP2C-type phosphatase. Loss of Ptc7p causes respiratory growth defects concomitant with elevated phosphorylation of select matrix proteins. Among these, Δptc7 yeast exhibit an increase in phosphorylation of Cit1p, the canonical citrate synthase of the tricarboxylic acid (TCA) cycle, that diminishes its activity. We find that phosphorylation of S462 can eliminate Cit1p enzymatic activity likely by disrupting its proper dimerization, and that Ptc7p-driven dephosphorylation rescues Cit1p activity. Collectively, our work connects Ptc7p to an essential TCA cycle function and to additional phosphorylation events that may affect mitochondrial activity inadvertently or in a regulatory manner.


Assuntos
Proteínas Mitocondriais/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Aerobiose , Fosfoproteínas/metabolismo , Fosforilação , Fosfosserina/metabolismo , Multimerização Proteica , Proteômica , Especificidade por Substrato
4.
Biotechnol Biofuels ; 9: 237, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27826356

RESUMO

BACKGROUND: Interannual variability in precipitation, particularly drought, can affect lignocellulosic crop biomass yields and composition, and is expected to increase biofuel yield variability. However, the effect of precipitation on downstream fermentation processes has never been directly characterized. In order to investigate the impact of interannual climate variability on biofuel production, corn stover and switchgrass were collected during 3 years with significantly different precipitation profiles, representing a major drought year (2012) and 2 years with average precipitation for the entire season (2010 and 2013). All feedstocks were AFEX (ammonia fiber expansion)-pretreated, enzymatically hydrolyzed, and the hydrolysates separately fermented using xylose-utilizing strains of Saccharomyces cerevisiae and Zymomonas mobilis. A chemical genomics approach was also used to evaluate the growth of yeast mutants in the hydrolysates. RESULTS: While most corn stover and switchgrass hydrolysates were readily fermented, growth of S. cerevisiae was completely inhibited in hydrolysate generated from drought-stressed switchgrass. Based on chemical genomics analysis, yeast strains deficient in genes related to protein trafficking within the cell were significantly more resistant to the drought-year switchgrass hydrolysate. Detailed biomass and hydrolysate characterization revealed that switchgrass accumulated greater concentrations of soluble sugars in response to the drought and these sugars were subsequently degraded to pyrazines and imidazoles during ammonia-based pretreatment. When added ex situ to normal switchgrass hydrolysate, imidazoles and pyrazines caused anaerobic growth inhibition of S. cerevisiae. CONCLUSIONS: In response to the osmotic pressures experienced during drought stress, plants accumulate soluble sugars that are susceptible to degradation during chemical pretreatments. For ammonia-based pretreatment, these sugars degrade to imidazoles and pyrazines. These compounds contribute to S. cerevisiae growth inhibition in drought-year switchgrass hydrolysate. This work discovered that variation in environmental conditions during the growth of bioenergy crops could have significant detrimental effects on fermentation organisms during biofuel production. These findings are relevant to regions where climate change is predicted to cause an increased incidence of drought and to marginal lands with poor water-holding capacity, where fluctuations in soil moisture may trigger frequent drought stress response in lignocellulosic feedstocks.

6.
PLoS Genet ; 12(10): e1006372, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27741250

RESUMO

The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically. We report that rapid xylose conversion by engineered and evolved S. cerevisiae strains depends upon epistatic interactions among genes encoding a xylose reductase (GRE3), a component of MAP Kinase (MAPK) signaling (HOG1), a regulator of Protein Kinase A (PKA) signaling (IRA2), and a scaffolding protein for mitochondrial iron-sulfur (Fe-S) cluster biogenesis (ISU1). Interestingly, the mutation in IRA2 only impacted anaerobic xylose consumption and required the loss of ISU1 function, indicating a previously unknown connection between PKA signaling, Fe-S cluster biogenesis, and anaerobiosis. Proteomic and metabolomic comparisons revealed that the xylose-metabolizing mutant strains exhibit altered metabolic pathways relative to the parental strain when grown in xylose. Further analyses revealed that interacting mutations in HOG1 and ISU1 unexpectedly elevated mitochondrial respiratory proteins and enabled rapid aerobic respiration of xylose and other non-fermentable carbon substrates. Our findings suggest a surprising connection between Fe-S cluster biogenesis and signaling that facilitates aerobic respiration and anaerobic fermentation of xylose, underscoring how much remains unknown about the eukaryotic signaling systems that regulate carbon metabolism.


Assuntos
Evolução Molecular Direcionada , Proteínas Mitocondriais/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas de Saccharomyces cerevisiae/genética , Xilose/metabolismo , Anaerobiose/genética , Epistasia Genética , Fermentação , Engenharia Genética , Glucose/metabolismo , Proteínas Ferro-Enxofre/genética , Redes e Vias Metabólicas/genética , Mutação , Proteômica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xilose/genética
7.
Bioresour Technol ; 205: 24-33, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26802184

RESUMO

Effects of degradation products (low molecular weight compounds produced during pretreatment) on the microbes used in the RaBIT (Rapid Bioconversion with Integrated recycling Technology) process that reduces enzyme usage up to 40% by efficient enzyme recycling were studied. Chemical genomic profiling was performed, showing no yeast response differences in hydrolysates produced during RaBIT enzymatic hydrolysis. Concentrations of degradation products in solution were quantified after different enzymatic hydrolysis cycles and fermentation cycles. Intracellular degradation product concentrations were also measured following fermentation. Degradation product concentrations in hydrolysate did not change between RaBIT enzymatic hydrolysis cycles; the cell population retained its ability to oxidize/reduce (detoxify) aldehydes over five RaBIT fermentation cycles; and degradation products accumulated within or on the cells as RaBIT fermentation cycles increased. Synthetic hydrolysate was used to confirm that pretreatment degradation products are the sole cause of decreased xylose consumption during RaBIT fermentations.


Assuntos
Biocombustíveis , Etanol/metabolismo , Fermentação , Saccharomyces cerevisiae/metabolismo , Zea mays/química , Hidrólise , Xilose/metabolismo
8.
Biotechnol Biofuels ; 8: 180, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26583044

RESUMO

BACKGROUND: Microbial conversion of lignocellulosic feedstocks into biofuels remains an attractive means to produce sustainable energy. It is essential to produce lignocellulosic hydrolysates in a consistent manner in order to study microbial performance in different feedstock hydrolysates. Because of the potential to introduce microbial contamination from the untreated biomass or at various points during the process, it can be difficult to control sterility during hydrolysate production. In this study, we compared hydrolysates produced from AFEX-pretreated corn stover and switchgrass using two different methods to control contamination: either by autoclaving the pretreated feedstocks prior to enzymatic hydrolysis, or by introducing antibiotics during the hydrolysis of non-autoclaved feedstocks. We then performed extensive chemical analysis, chemical genomics, and comparative fermentations to evaluate any differences between these two different methods used for producing corn stover and switchgrass hydrolysates. RESULTS: Autoclaving the pretreated feedstocks could eliminate the contamination for a variety of feedstocks, whereas the antibiotic gentamicin was unable to control contamination consistently during hydrolysis. Compared to the addition of gentamicin, autoclaving of biomass before hydrolysis had a minimal effect on mineral concentrations, and showed no significant effect on the two major sugars (glucose and xylose) found in these hydrolysates. However, autoclaving elevated the concentration of some furanic and phenolic compounds. Chemical genomics analyses using Saccharomyces cerevisiae strains indicated a high correlation between the AFEX-pretreated hydrolysates produced using these two methods within the same feedstock, indicating minimal differences between the autoclaving and antibiotic methods. Comparative fermentations with S. cerevisiae and Zymomonas mobilis also showed that autoclaving the AFEX-pretreated feedstocks had no significant effects on microbial performance in these hydrolysates. CONCLUSIONS: Our results showed that autoclaving the pretreated feedstocks offered advantages over the addition of antibiotics for hydrolysate production. The autoclaving method produced a more consistent quality of hydrolysate, and also showed negligible effects on microbial performance. Although the levels of some of the lignocellulose degradation inhibitors were elevated by autoclaving the feedstocks prior to enzymatic hydrolysis, no significant effects on cell growth, sugar utilization, or ethanol production were seen during bacterial or yeast fermentations in hydrolysates produced using the two different methods.

9.
Environ Sci Technol ; 49(14): 8914-22, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26121369

RESUMO

Lignocellulosic biomass hydrolysates hold great potential as a feedstock for microbial biofuel production, due to their high concentration of fermentable sugars. Present at lower concentrations are a suite of aromatic compounds that can inhibit fermentation by biofuel-producing microbes. We have developed a microbial-mediated strategy for removing these aromatic compounds, using the purple nonsulfur bacterium Rhodopseudomonas palustris. When grown photoheterotrophically in an anaerobic environment, R. palustris removes most of the aromatics from ammonia fiber expansion (AFEX) treated corn stover hydrolysate (ACSH), while leaving the sugars mostly intact. We show that R. palustris can metabolize a host of aromatic substrates in ACSH that have either been previously described as unable to support growth, such as methoxylated aromatics, and those that have not yet been tested, such as aromatic amides. Removing the aromatics from ACSH with R. palustris, allowed growth of a second microbe that could not grow in the untreated ACSH. By using defined mutants, we show that most of these aromatic compounds are metabolized by the benzoyl-CoA pathway. We also show that loss of enzymes in the benzoyl-CoA pathway prevents total degradation of the aromatics in the hydrolysate, and instead allows for biological transformation of this suite of aromatics into selected aromatic compounds potentially recoverable as an additional bioproduct.


Assuntos
Hidrocarbonetos Aromáticos/metabolismo , Rodopseudomonas/metabolismo , Resíduos , Zea mays/química , Amônia/farmacologia , Anaerobiose/efeitos dos fármacos , Ácido Benzoico/química , Biodegradação Ambiental/efeitos dos fármacos , Biomassa , Biotransformação/efeitos dos fármacos , Carboidratos/análise , Hidrocarbonetos Aromáticos/química , Hidrólise , Lignina/metabolismo , Mutação , Rhodobacter sphaeroides/efeitos dos fármacos , Rhodobacter sphaeroides/metabolismo , Rodopseudomonas/efeitos dos fármacos , Rodopseudomonas/crescimento & desenvolvimento , Zea mays/efeitos dos fármacos
10.
Proc Natl Acad Sci U S A ; 112(12): E1490-7, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25775513

RESUMO

A rise in resistance to current antifungals necessitates strategies to identify alternative sources of effective fungicides. We report the discovery of poacic acid, a potent antifungal compound found in lignocellulosic hydrolysates of grasses. Chemical genomics using Saccharomyces cerevisiae showed that loss of cell wall synthesis and maintenance genes conferred increased sensitivity to poacic acid. Morphological analysis revealed that cells treated with poacic acid behaved similarly to cells treated with other cell wall-targeting drugs and mutants with deletions in genes involved in processes related to cell wall biogenesis. Poacic acid causes rapid cell lysis and is synergistic with caspofungin and fluconazole. The cellular target was identified; poacic acid localized to the cell wall and inhibited ß-1,3-glucan synthesis in vivo and in vitro, apparently by directly binding ß-1,3-glucan. Through its activity on the glucan layer, poacic acid inhibits growth of the fungi Sclerotinia sclerotiorum and Alternaria solani as well as the oomycete Phytophthora sojae. A single application of poacic acid to leaves infected with the broad-range fungal pathogen S. sclerotiorum substantially reduced lesion development. The discovery of poacic acid as a natural antifungal agent targeting ß-1,3-glucan highlights the potential side use of products generated in the processing of renewable biomass toward biofuels as a source of valuable bioactive compounds and further clarifies the nature and mechanism of fermentation inhibitors found in lignocellulosic hydrolysates.


Assuntos
Ácidos Cumáricos/química , Fungicidas Industriais/química , Poaceae/química , Saccharomyces cerevisiae/efeitos dos fármacos , Estilbenos/química , beta-Glucanas/química , Caspofungina , Membrana Celular/metabolismo , Parede Celular/metabolismo , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Equinocandinas/química , Genômica , Hidrólise , Concentração Inibidora 50 , Lignina/química , Lipopeptídeos , Extratos Vegetais/química , Saccharomyces cerevisiae/metabolismo
11.
PLoS One ; 9(9): e107499, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25222864

RESUMO

The inability of the yeast Saccharomyces cerevisiae to ferment xylose effectively under anaerobic conditions is a major barrier to economical production of lignocellulosic biofuels. Although genetic approaches have enabled engineering of S. cerevisiae to convert xylose efficiently into ethanol in defined lab medium, few strains are able to ferment xylose from lignocellulosic hydrolysates in the absence of oxygen. This limited xylose conversion is believed to result from small molecules generated during biomass pretreatment and hydrolysis, which induce cellular stress and impair metabolism. Here, we describe the development of a xylose-fermenting S. cerevisiae strain with tolerance to a range of pretreated and hydrolyzed lignocellulose, including Ammonia Fiber Expansion (AFEX)-pretreated corn stover hydrolysate (ACSH). We genetically engineered a hydrolysate-resistant yeast strain with bacterial xylose isomerase and then applied two separate stages of aerobic and anaerobic directed evolution. The emergent S. cerevisiae strain rapidly converted xylose from lab medium and ACSH to ethanol under strict anaerobic conditions. Metabolomic, genetic and biochemical analyses suggested that a missense mutation in GRE3, which was acquired during the anaerobic evolution, contributed toward improved xylose conversion by reducing intracellular production of xylitol, an inhibitor of xylose isomerase. These results validate our combinatorial approach, which utilized phenotypic strain selection, rational engineering and directed evolution for the generation of a robust S. cerevisiae strain with the ability to ferment xylose anaerobically from ACSH.


Assuntos
Biocombustíveis , Lignina/metabolismo , Saccharomyces cerevisiae/genética , Xilose/metabolismo , Amônia/metabolismo , Anaerobiose , Biomassa , Etanol/metabolismo , Fermentação , Engenharia Genética , Hidrólise , Saccharomyces cerevisiae/enzimologia , Xilose/genética , Zea mays/metabolismo
12.
Front Microbiol ; 5: 402, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25177315

RESUMO

Efficient microbial conversion of lignocellulosic hydrolysates to biofuels is a key barrier to the economically viable deployment of lignocellulosic biofuels. A chief contributor to this barrier is the impact on microbial processes and energy metabolism of lignocellulose-derived inhibitors, including phenolic carboxylates, phenolic amides (for ammonia-pretreated biomass), phenolic aldehydes, and furfurals. To understand the bacterial pathways induced by inhibitors present in ammonia-pretreated biomass hydrolysates, which are less well studied than acid-pretreated biomass hydrolysates, we developed and exploited synthetic mimics of ammonia-pretreated corn stover hydrolysate (ACSH). To determine regulatory responses to the inhibitors normally present in ACSH, we measured transcript and protein levels in an Escherichia coli ethanologen using RNA-seq and quantitative proteomics during fermentation to ethanol of synthetic hydrolysates containing or lacking the inhibitors. Our study identified four major regulators mediating these responses, the MarA/SoxS/Rob network, AaeR, FrmR, and YqhC. Induction of these regulons was correlated with a reduced rate of ethanol production, buildup of pyruvate, depletion of ATP and NAD(P)H, and an inhibition of xylose conversion. The aromatic aldehyde inhibitor 5-hydroxymethylfurfural appeared to be reduced to its alcohol form by the ethanologen during fermentation, whereas phenolic acid and amide inhibitors were not metabolized. Together, our findings establish that the major regulatory responses to lignocellulose-derived inhibitors are mediated by transcriptional rather than translational regulators, suggest that energy consumed for inhibitor efflux and detoxification may limit biofuel production, and identify a network of regulators for future synthetic biology efforts.

13.
Bioresour Technol ; 147: 212-220, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23999256

RESUMO

To minimize the change of lignocellulosic hydrolysate composition during storage, the effects of storage conditions (temperature, pH and time) on the composition and fermentability of hydrolysate prepared from AFEX™ (Ammonia Fiber Expansion - a trademark of MBI, Lansing, MI) pretreated corn stover were investigated. Precipitates formed during hydrolysate storage increased with increasing storage pH and time. The precipitate amount was the least when hydrolysate was stored at 4 °C and pH 4.8, accounting for only 0.02% of the total hydrolysate weight after 3-month storage. No significant changes of NMR (Nuclear Magnetic Resonance) spectra and concentrations of sugars, minerals and heavy metals were observed after storage under this condition. When pH was adjusted higher before fermentation, precipitates also formed, consisting of mostly struvite (MgNH4PO4·6H2O) and brushite (CaHPO4·2H2O). Escherichia coli and Saccharomyces cerevisiae fermentation studies and yeast cell growth assays showed no significant difference in fermentability between fresh hydrolysate and stored hydrolysate.


Assuntos
Fermentação , Lignina/metabolismo , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Hidrólise , Espectroscopia de Ressonância Magnética , Saccharomyces cerevisiae/metabolismo , Temperatura
14.
Mol Cell ; 49(1): 186-99, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23201123

RESUMO

Calorie restriction (CR) extends life span in diverse species. Mitochondria play a key role in CR adaptation; however, the molecular details remain elusive. We developed and applied a quantitative mass spectrometry method to probe the liver mitochondrial acetyl-proteome during CR versus control diet in mice that were wild-type or lacked the protein deacetylase SIRT3. Quantification of 3,285 acetylation sites-2,193 from mitochondrial proteins-rendered a comprehensive atlas of the acetyl-proteome and enabled global site-specific, relative acetyl occupancy measurements between all four experimental conditions. Bioinformatic and biochemical analyses provided additional support for the effects of specific acetylation on mitochondrial protein function. Our results (1) reveal widespread reprogramming of mitochondrial protein acetylation in response to CR and SIRT3, (2) identify three biochemically distinct classes of acetylation sites, and (3) provide evidence that SIRT3 is a prominent regulator in CR adaptation by coordinately deacetylating proteins involved in diverse pathways of metabolism and mitochondrial maintenance.


Assuntos
Restrição Calórica , Proteínas Mitocondriais/metabolismo , Proteoma/metabolismo , Sirtuína 3/fisiologia , Acetilcoenzima A/metabolismo , Acetilação , Adaptação Fisiológica , Motivos de Aminoácidos , Sequência de Aminoácidos , Aminoácidos/metabolismo , Animais , Metabolismo dos Carboidratos , Células Cultivadas , Cromatografia por Troca Iônica , Análise por Conglomerados , Sequência Consenso , Expressão Gênica , Genes Mitocondriais , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/isolamento & purificação , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Processamento de Proteína Pós-Traducional , Proteoma/química , Proteoma/isolamento & purificação , Sirtuína 3/química , Sirtuína 3/isolamento & purificação , Sirtuína 3/metabolismo , Coloração e Rotulagem , Espectrometria de Massas em Tandem
15.
Appl Environ Microbiol ; 78(16): 5492-500, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22636012

RESUMO

Fermentation of cellulosic and hemicellulosic sugars from biomass could resolve food-versus-fuel conflicts inherent in the bioconversion of grains. However, the inability to coferment glucose and xylose is a major challenge to the economical use of lignocellulose as a feedstock. Simultaneous cofermentation of glucose, xylose, and cellobiose is problematic for most microbes because glucose represses utilization of the other saccharides. Surprisingly, the ascomycetous, beetle-associated yeast Spathaspora passalidarum, which ferments xylose and cellobiose natively, can also coferment these two sugars in the presence of 30 g/liter glucose. S. passalidarum simultaneously assimilates glucose and xylose aerobically, it simultaneously coferments glucose, cellobiose, and xylose with an ethanol yield of 0.42 g/g, and it has a specific ethanol production rate on xylose more than 3 times that of the corresponding rate on glucose. Moreover, an adapted strain of S. passalidarum produced 39 g/liter ethanol with a yield of 0.37 g/g sugars from a hardwood hydrolysate. Metabolome analysis of S. passalidarum before onset and during the fermentations of glucose and xylose showed that the flux of glycolytic intermediates is significantly higher on xylose than on glucose. The high affinity of its xylose reductase activities for NADH and xylose combined with allosteric activation of glycolysis probably accounts in part for its unusual capacities. These features make S. passalidarum very attractive for studying regulatory mechanisms enabling bioconversion of lignocellulosic materials by yeasts.


Assuntos
Celobiose/metabolismo , Glucose/metabolismo , Saccharomycetales/metabolismo , Xilose/metabolismo , Animais , Besouros/microbiologia , Etanol/metabolismo , Fermentação , Metaboloma , Saccharomycetales/isolamento & purificação
16.
Appl Environ Microbiol ; 78(9): 3442-57, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22389370

RESUMO

The physiology of ethanologenic Escherichia coli grown anaerobically in alkali-pretreated plant hydrolysates is complex and not well studied. To gain insight into how E. coli responds to such hydrolysates, we studied an E. coli K-12 ethanologen fermenting a hydrolysate prepared from corn stover pretreated by ammonia fiber expansion. Despite the high sugar content (∼6% glucose, 3% xylose) and relatively low toxicity of this hydrolysate, E. coli ceased growth long before glucose was depleted. Nevertheless, the cells remained metabolically active and continued conversion of glucose to ethanol until all glucose was consumed. Gene expression profiling revealed complex and changing patterns of metabolic physiology and cellular stress responses during an exponential growth phase, a transition phase, and the glycolytically active stationary phase. During the exponential and transition phases, high cell maintenance and stress response costs were mitigated, in part, by free amino acids available in the hydrolysate. However, after the majority of amino acids were depleted, the cells entered stationary phase, and ATP derived from glucose fermentation was consumed entirely by the demands of cell maintenance in the hydrolysate. Comparative gene expression profiling and metabolic modeling of the ethanologen suggested that the high energetic cost of mitigating osmotic, lignotoxin, and ethanol stress collectively limits growth, sugar utilization rates, and ethanol yields in alkali-pretreated lignocellulosic hydrolysates.


Assuntos
Escherichia coli K12/metabolismo , Etanol/metabolismo , Etanol/toxicidade , Estresse Fisiológico , Zea mays/metabolismo , Aminoácidos/metabolismo , Anaerobiose , Escherichia coli K12/crescimento & desenvolvimento , Fermentação , Perfilação da Expressão Gênica , Glucose/metabolismo
17.
J Microbiol Methods ; 86(2): 224-30, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21621564

RESUMO

The muramic acid assay is a powerful tool for detecting both intact bacteria and bacterial debris. Past use of aldononitrile acetate derivatization for determining muramic acid in complex samples by gas chromatography/mass spectrometry met detection needs in many instances; however, questions have been raised regarding the interpretation of the derivative structure and its electron ionization fragments. In this study, we applied different methods and proved that the aldononitrile acetate derivatized muramic acid yields a molecular weight of 398, associated with a lactam structure. We also presented evidence that the structure of aldononitrile acetate derivatized muramic acid is acetylated at four positions, 3 O-acetylations and 1N-acetylation. In practical manner, this communication provides a comprehensive reference to researchers using δ(13)C value or ion fragments of the muramic acid marker in biogeochemical studies.


Assuntos
Bactérias/química , Íons/química , Ácidos Murâmicos/química , Acetilação , Íons/isolamento & purificação , Lactamas/química , Estrutura Molecular , Peso Molecular , Ácidos Murâmicos/isolamento & purificação
18.
Genetics ; 186(4): 1197-205, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20855568

RESUMO

Ethanol production from lignocellulosic biomass holds promise as an alternative fuel. However, industrial stresses, including ethanol stress, limit microbial fermentation and thus prevent cost competitiveness with fossil fuels. To identify novel engineering targets for increased ethanol tolerance, we took advantage of natural diversity in wild Saccharomyces cerevisiae strains. We previously showed that an S288c-derived lab strain cannot acquire higher ethanol tolerance after a mild ethanol pretreatment, which is distinct from other stresses. Here, we measured acquired ethanol tolerance in a large panel of wild strains and show that most strains can acquire higher tolerance after pretreatment. We exploited this major phenotypic difference to address the mechanism of acquired ethanol tolerance, by comparing the global gene expression response to 5% ethanol in S288c and two wild strains. Hundreds of genes showed variation in ethanol-dependent gene expression across strains. Computational analysis identified several transcription factor modules and known coregulated genes as differentially expressed, implicating genetic variation in the ethanol signaling pathway. We used this information to identify genes required for acquisition of ethanol tolerance in wild strains, including new genes and processes not previously linked to ethanol tolerance, and four genes that increase ethanol tolerance when overexpressed. Our approach shows that comparative genomics across natural isolates can quickly identify genes for industrial engineering while expanding our understanding of natural diversity.


Assuntos
Tolerância a Medicamentos/genética , Etanol/metabolismo , Fermentação/genética , Genes Fúngicos/fisiologia , Variação Genética , Saccharomyces cerevisiae/genética , Etanol/farmacologia , Redes Reguladoras de Genes , Genômica
20.
Biochim Biophys Acta ; 1621(2): 211-7, 2003 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-12726997

RESUMO

Oxidative DNA damage can result from environmental factors, such as radiation, as well as from the untoward consequences of normal metabolic processes. It is of interest to assay oxidative DNA damage in cells and tissues because this damage has been implicated in human disease, particularly cancer. Eleven indicators of oxidative DNA damage have been measured by Liquid Chromatography-Mass Spectrometry (LC-MS) in DNA extracted from cells exposed to oxidative stress. Mouse fibroblast cells were exposed to hydrogen peroxide and to UVC light and to the combined action of both agents. Significant increases of the 8-oxo-7,8-dihydropurine lesions over background were detected. Significant increases of the formamido lesions resulting from breakdown of pyrimidine bases were also observed. Of special interest was the observation of double lesions, tandem combinations of both aforementioned lesions, in cells exposed to oxidative stress.


Assuntos
Dano ao DNA , Estresse Oxidativo , Animais , Cromatografia Líquida , DNA/metabolismo , DNA/efeitos da radiação , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C3H
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...