Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 290(25): 15878-15891, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25931127

RESUMO

Using an unbiased systems genetics approach, we previously predicted a role for CHAC1 in the endoplasmic reticulum stress pathway, linked functionally to activating transcription factor 4 (ATF4) following treatment with oxidized phospholipids, a model for atherosclerosis. Mouse and yeast CHAC1 homologs have been shown to degrade glutathione in yeast and a cell-free system. In this report, we further defined the ATF4-CHAC1 interaction by cloning the human CHAC1 promoter upstream of a luciferase reporter system for in vitro assays in HEK293 and U2OS cells. Mutation and deletion analyses defined two major cis DNA elements necessary and sufficient for CHAC1 promoter-driven luciferase transcription under conditions of ER stress or ATF4 coexpression: the -267 ATF/cAMP response element (CRE) site and a novel -248 ATF/CRE modifier (ACM) element. We also examined the ability of the CHAC1 ATF/CRE and ACM sequences to bind ATF4 and ATF3 using immunoblot-EMSA and confirmed ATF4, ATF3, and CCAAT/enhancer-binding protein ß binding at the human CHAC1 promoter in the proximity of the ATF/CRE and ACM using ChIP. To further validate the function of CHAC1 in a human cell model, we measured glutathione levels in HEK293 cells with enhanced CHAC1 expression. Overexpression of CHAC1 led to a robust depletion of glutathione, which was alleviated in a CHAC1 catalytic mutant. These results suggest an important role for CHAC1 in oxidative stress and apoptosis with implications for human health and disease.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Glutationa/metabolismo , RNA Mensageiro/biossíntese , Elementos de Resposta/fisiologia , gama-Glutamilciclotransferase/biossíntese , Fator 3 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/genética , Animais , Sequência de Bases , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Glutationa/genética , Células HEK293 , Humanos , Camundongos , Estresse Oxidativo/fisiologia , RNA Mensageiro/genética , Deleção de Sequência , gama-Glutamilciclotransferase/genética
2.
Clin Case Rep ; 3(1): 14-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25678966

RESUMO

This case demonstrates two important points about Brugada syndrome unmasking: electrocardiograph abnormality severity may correspond to lithium levels and unmasking may occur in the therapeutic range of lithium. Also, the correlation of CACNA1C with Brugada and Bipolar suggests allelic disequilibrium, leading to a subpopulation of bipolar patients sensitive to arrhythmia.

3.
PLoS One ; 8(9): e75845, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24073281

RESUMO

Lipid molecules such as arachidonic acid (AA) and sphingolipid metabolites have been implicated in modulation of neuronal and endocrine secretion. Here we compare the effects of these lipids on secretion from cultured bovine chromaffin cells. First, we demonstrate that exogenous sphingosine and AA interact with the secretory apparatus as confirmed by FRET experiments. Examination of plasma membrane SNARE microdomains and chromaffin granule dynamics using total internal reflection fluorescent microscopy (TIRFM) suggests that sphingosine production promotes granule tethering while arachidonic acid promotes full docking. Our analysis of single granule release kinetics by amperometry demonstrated that both sphingomyelinase and AA treatments enhanced drastically the amount of catecholamines released per individual event by either altering the onset phase of or by prolonging the off phase of single granule catecholamine release kinetics. Together these results demonstrate that the kinetics and extent of the exocytotic fusion pore formation can be modulated by specific signalling lipids through related functional mechanisms.


Assuntos
Ácido Araquidônico/metabolismo , Catecolaminas/metabolismo , Células Cromafins/metabolismo , Grânulos Citoplasmáticos/metabolismo , Proteínas SNARE/metabolismo , Esfingolipídeos/metabolismo , Animais , Transporte Biológico , Bovinos , Membrana Celular/metabolismo , Células Cultivadas , Exocitose/fisiologia , Processamento de Imagem Assistida por Computador , Fusão de Membrana , Microscopia de Fluorescência , Estrutura Terciária de Proteína
4.
Free Radic Biol Med ; 59: 56-68, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22954622

RESUMO

Oxidative modifications to cellular proteins are critical in mediating redox-sensitive processes such as autophagy, the antioxidant response, and apoptosis. The proteins that become modified by reactive species are often compartmentalized to specific organelles or regions of the cell. Here, we detail protocols for identifying the subcellular protein targets of lipid oxidation and for linking protein modifications with biological responses such as autophagy. Fluorophores such as BODIPY-labeled arachidonic acid or BODIPY-conjugated electrophiles can be paired with organelle-specific probes to identify specific biological processes and signaling pathways activated in response to oxidative stress. In particular, we demonstrate "negative" and "positive" labeling methods using BODIPY-tagged reagents for examining oxidative modifications to protein nucleophiles. The protocol describes the use of these probes in slot immunoblotting, quantitative Western blotting, in-gel fluorescence, and confocal microscopy techniques. In particular, the use of the BODIPY fluorophore with organelle- or biological process-specific dyes and chromophores is highlighted. These methods can be used in multiple cell types as well as isolated organelles to interrogate the role of oxidative modifications in regulating biological responses to oxidative stress.


Assuntos
Corantes Fluorescentes/análise , Peroxidação de Lipídeos , Proteoma/análise , Corantes Fluorescentes/química , Estresse Oxidativo
5.
Biochem J ; 442(3): 453-64, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22364280

RESUMO

The process of lipid peroxidation is widespread in biology and is mediated through both enzymatic and non-enzymatic pathways. A significant proportion of the oxidized lipid products are electrophilic in nature, the RLS (reactive lipid species), and react with cellular nucleophiles such as the amino acids cysteine, lysine and histidine. Cell signalling by electrophiles appears to be limited to the modification of cysteine residues in proteins, whereas non-specific toxic effects involve modification of other nucleophiles. RLS have been found to participate in several physiological pathways including resolution of inflammation, cell death and induction of cellular antioxidants through the modification of specific signalling proteins. The covalent modification of proteins endows some unique features to this signalling mechanism which we have termed the 'covalent advantage'. For example, covalent modification of signalling proteins allows for the accumulation of a signal over time. The activation of cell signalling pathways by electrophiles is hierarchical and depends on a complex interaction of factors such as the intrinsic chemical reactivity of the electrophile, the intracellular domain to which it is exposed and steric factors. This introduces the concept of electrophilic signalling domains in which the production of the lipid electrophile is in close proximity to the thiol-containing signalling protein. In addition, we propose that the role of glutathione and associated enzymes is to insulate the signalling domain from uncontrolled electrophilic stress. The persistence of the signal is in turn regulated by the proteasomal pathway which may itself be subject to redox regulation by RLS. Cell death mediated by RLS is associated with bioenergetic dysfunction, and the damaged proteins are probably removed by the lysosome-autophagy pathway.


Assuntos
Transdução de Sinais , Animais , Autofagia , Morte Celular , Humanos , Metabolismo dos Lipídeos , Peroxidação de Lipídeos , Oxirredução , Estresse Fisiológico
6.
Antioxid Redox Signal ; 17(11): 1580-9, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22352679

RESUMO

SIGNIFICANCE: The process of lipid peroxidation is emerging as an important mechanism that mediates the post-translational modification of proteins. Through advanced analytical techniques, lipidomics is now emerging as a critical factor in our understanding of the pathology of a broad range of diseases. RECENT ADVANCES: During enzymatic or nonenzymatic lipid peroxidation, the simple structure of an unsaturated fatty acid is converted to an oxylipidome, many members of which are electrophilic and form the reactive lipid species (RLS). This aspect of lipid biology is particularly important, as it directly connects lipidomics with proteomics through the post-translational modification of a sub-proteome in the cell. This arises, because the electrophilic members of the oxylipidome react with proteins at nucleophilic amino-acid residues and so change their structure and function to form electrophile-responsive proteomes (ERP). CRITICAL ISSUES: Biological systems have relatively few but well-defined and mechanistically distinct pro-oxidant pathways generating RLS. Defining the ERPs and the mechanisms underlying their formation and action has been a major focus for the field of lipidomics and redox signaling. FUTURE DIRECTIONS: We propose that a unique oxylipidome can be defined for specific oxidants and will predict the biological responses through the reaction with proteins to form a specific ERP. In this review, we will describe the ERPs that modulate antioxidant and anti-inflammatory protective pathways, including the activation of Keap1/Nrf2 and the promotion of cell death through interactions with mitochondria.


Assuntos
Peroxidação de Lipídeos , Mitocôndrias/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas , Antioxidantes/metabolismo , Morte Celular , Ácidos Graxos Insaturados/metabolismo , Humanos , Oxirredução , Proteínas/análise , Proteínas/metabolismo , Proteoma , Transdução de Sinais
7.
Am J Physiol Heart Circ Physiol ; 302(7): H1394-409, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22245770

RESUMO

The hemolysis of red blood cells and muscle damage results in the release of the heme proteins myoglobin, hemoglobin, and free heme into the vasculature. The mechanisms of heme toxicity are not clear but may involve lipid peroxidation, which we hypothesized would result in mitochondrial damage in endothelial cells. To test this, we used bovine aortic endothelial cells (BAEC) in culture and exposed them to hemin. Hemin led to mitochondrial dysfunction, activation of autophagy, mitophagy, and, at high concentrations, apoptosis. To detect whether hemin induced lipid peroxidation and damaged proteins, we used derivatives of arachidonic acid tagged with biotin or Bodipy (Bt-AA, BD-AA). We found that in cells treated with hemin, Bt-AA was oxidized and formed adducts with proteins, which were inhibited by α-tocopherol. Hemin-dependent mitochondrial dysfunction was also attenuated by α-tocopherol. Protein thiol modification and carbonyl formation occurred on exposure and was not inhibited by α-tocopherol. Supporting a protective role of autophagy, the inhibitor 3-methyladenine potentiated cell death. These data demonstrate that hemin mediates cytotoxicity through a mechanism which involves protein modification by oxidized lipids and other oxidants, decreased respiratory capacity, and a protective role for the autophagic process. Attenuation of lipid peroxidation may be able to preserve mitochondrial function in the endothelium and protect cells from heme-dependent toxicity.


Assuntos
Autofagia/fisiologia , Células Endoteliais/efeitos dos fármacos , Hemina/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Miopatias Mitocondriais/induzido quimicamente , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/farmacologia , Western Blotting , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Cães , Metabolismo Energético/efeitos dos fármacos , Líquido Extracelular/metabolismo , Corantes Fluorescentes , Proteínas de Fluorescência Verde/metabolismo , Indicadores e Reagentes , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Miopatias Mitocondriais/patologia , Processamento de Proteína Pós-Traducional/fisiologia
8.
Traffic ; 12(7): 878-89, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21438970

RESUMO

Microglia are immune effector cells in the central nervous system (CNS) and their activation, migration and proliferation play crucial roles in brain injuries and diseases. We examined the role of intracellular Ca(2+) -independent phospholipase A(2) (iPLA(2)) in the regulation of microglia chemotaxis toward ADP. Inhibition of iPLA(2) by 4-bromoenol lactone (BEL) or iPLA(2) knockdown exerted a significant inhibition on phosphatidylinositol-3-kinase (PI3K) activation and chemotaxis. Further examination revealed that iPLA(2) knockdown abrogated Src activation, which is required for PI3K activation and chemotaxis. Colocalization studies showed that cSrc-GFP was retained in the endosomal recycling compartment (ERC) in iPLA(2) knockdown cells, but the addition of arachidonic acid (AA) could restore cSrc trafficking to the plasma membrane by allowing the formation/release of recycling endosomes associated with cSrc-GFP. Using BODIPY-AA, we showed that AA is selectively enriched in recycling endosomes. These results suggest that AA is required for the cSrc trafficking to the plasma membrane by controlling the formation/release of recycling endosomes from the ERC.


Assuntos
Quimiotaxia/fisiologia , Microglia/fisiologia , Fosfolipases A2 Independentes de Cálcio/metabolismo , Quinases da Família src/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Ácido Araquidônico/química , Ácido Araquidônico/metabolismo , Transporte Biológico , Compostos de Boro/química , Compostos de Boro/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Extensões da Superfície Celular/metabolismo , Endossomos/metabolismo , Ativação Enzimática , Inibidores Enzimáticos/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Adesões Focais/metabolismo , Microglia/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosfolipases A2 Independentes de Cálcio/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
9.
Biochem J ; 426(1): 31-41, 2010 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-19916962

RESUMO

Prototypical electrophiles such as the lipid 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) are well recognized for their therapeutic potential. Electrophiles modify signalling proteins in both the cytosol and mitochondrion, which results in diverse cellular responses, including cytoprotective effects and, at high doses, cell death. These findings led us to the hypothesis that targeting electrophiles to specific compartments in the cell could fine-tune their biological effects. To examine this, we synthesized a novel mitochondrially targeted analogue of 15d-PGJ2 (mito-15d-PGJ2) and tested its effects on redox cell signalling. Mito-15d-PGJ2 caused profound defects in mitochondrial bioenergetics and mitochondrial membrane depolarization when compared with 15d-PGJ2. We also found that mito-15d-PGJ2 modified different members of the electrophile-responsive proteome, was more potent at initiating intrinsic apoptotic cell death and was less effective than 15d-PGJ2 at up-regulating the expression of HO-1 (haem oxygenase-1) and glutathione. These results demonstrate the feasibility of modulating the biological effects of electrophiles by targeting the pharmacophore to mitochondria.


Assuntos
Apoptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Prostaglandina D2/análogos & derivados , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glutationa/metabolismo , Heme Oxigenase-1/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Potencial da Membrana Mitocondrial , Oxirredução/efeitos dos fármacos , Prostaglandina D2/farmacologia , Transdução de Sinais/efeitos dos fármacos
10.
Biochim Biophys Acta ; 1797(2): 285-95, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19925774

RESUMO

Protein thiolation by glutathione is a reversible and regulated post-translational modification that is increased in response to oxidants and nitric oxide. Because many mitochondrial enzymes contain critical thiol residues, it has been hypothesized that thiolation reactions regulate cell metabolism and survival. However, it has been difficult to differentiate the biological effects due to protein thiolation from other oxidative protein modifications. In this study, we used diamide to titrate protein glutathiolation and examined its impact on glycolysis, mitochondrial function, and cell death in rat aortic smooth muscle cells. Treatment of cells with diamide increased protein glutathiolation in a concentration-dependent manner and had comparably little effect on protein-protein disulfide formation. Diamide increased mitochondrial proton leak and decreased ATP-linked mitochondrial oxygen consumption and cellular bioenergetic reserve capacity. Concentrations of diamide above 200 microM promoted acute bioenergetic failure and caused cell death, whereas lower concentrations of diamide led to a prolonged increase in glycolytic flux and were not associated with loss of cell viability. Depletion of glutathione using buthionine sulfoximine had no effect on basal protein thiolation or cellular bioenergetics but decreased diamide-induced protein glutathiolation and sensitized the cells to bioenergetic dysfunction and death. The effects of diamide on cell metabolism and viability were fully reversible upon addition of dithiothreitol. These data suggest that protein thiolation modulates key metabolic processes in both the mitochondria and cytosol.


Assuntos
Aorta/metabolismo , Metabolismo Energético , Glutationa/metabolismo , Músculo Liso Vascular/metabolismo , Proteínas/metabolismo , Animais , Aorta/citologia , Aorta/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Diamida/farmacologia , Dissulfetos/farmacologia , Glicólise , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Oxirredução , Oxigênio/metabolismo , Processamento de Proteína Pós-Traducional , Ratos , Compostos de Sulfidrila/farmacologia
11.
Free Radic Biol Med ; 47(3): 201-12, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19446632

RESUMO

Products of lipid peroxidation are generated in a wide range of pathologies associated with oxidative stress and inflammation. Many oxidized lipids contain reactive functional groups that can modify proteins, change their structure and function, and affect cell signaling. However, intracellular localization and protein adducts of reactive lipids have been difficult to detect, and the methods of detection rely largely on antibodies raised against specific lipid-protein adducts. As an alternative approach to monitoring oxidized lipids in cultured cells, we have tagged the lipid peroxidation substrate arachidonic acid and an electrophilic lipid, 15-deoxy-Delta(12,14)-prostaglandin-J2 (15d-PGJ2), with either biotin or the fluorophore BODIPY. Tagged arachidonic acid can be used in combination with conditions of oxidant stress or inflammation to assess the subcellular localization and protein modification by oxidized lipids generated in situ. Furthermore, we show that reactive lipid oxidation products such as 15d-PGJ2 can also be labeled and used in fluorescence and Western blotting applications. This article describes the synthesis, purification, and selected application of these tagged lipids in vitro.


Assuntos
Ácido Araquidônico/metabolismo , Bioquímica/métodos , Prostaglandina D2/análogos & derivados , Proteínas/análise , Western Blotting , Compostos de Boro/metabolismo , Diagnóstico por Imagem/instrumentação , Corantes Fluorescentes , Inflamação , Lipídeos/síntese química , Lipídeos/isolamento & purificação , Estresse Oxidativo , Imagens de Fantasmas , Prostaglandina D2/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...