Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circ Genom Precis Med ; 12(11): e002648, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31638832

RESUMO

BACKGROUND: MRAS was identified recently as a novel Noonan syndrome (NS)-susceptibility gene. Phenotypically, both patients with NS, harboring pathogenic MRAS variants, displayed severe cardiac hypertrophy. This study aimed to demonstrate both the necessity and sufficiency of a patient-specific variant (p.Gly23Val-MRAS) to cause NS through the generation and characterization of patient-specific, isogenic control, and disease modeled induced pluripotent stem cell (iPSC) lines. METHODS: iPSCs were derived from a patient with a p.Gly23Val-MRAS variant to assess the effect of MRAS variants on pathogenesis of NS-associated cardiac hypertrophy. CRISPR/Cas9 gene editing was used to correct the pathogenic p.Gly23Val-MRAS variant in patient cells (isogenic control) and to introduce the pathogenic variant into unrelated control cells (disease modeled) to determine the necessity and sufficiency of the p.Gly23Val-MRAS variant to elicit the disease phenotype in iPSC-derived cardiomyocytes (iPSC-CMs). iPSC-CMs were analyzed by microscopy and immunofluroesence, single-cell RNAseq, Western blot, room temperature-quantitative polymerase chain reaction, and live-cell calcium imaging to define an in vitro phenotype of MRAS-mediated cardiac hypertrophy. RESULTS: Compared with controls, both patient and disease modeled iPSC-CMs were significantly larger and demonstrated changes in gene expression and intracellular pathway signaling characteristic of cardiac hypertrophy. Additionally, patient and disease modeled iPSC-CMs displayed impaired Ca2+ handling, including increased frequency of irregular Ca2+ transients and changes in Ca2+ handling kinetics. CONCLUSIONS: p.Gly23Val-MRAS is both necessary and sufficient to elicit a cardiac hypertrophy phenotype in iPSC-CMs that includes increased cell size, changes in cardiac gene expression, and abnormal calcium handling-providing further evidence to establish the monogenetic pathogenicity of p.Gly23Val-MRAS in NS with cardiac hypertrophy.


Assuntos
Cardiomegalia/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Síndrome de Noonan/genética , Proteínas ras/genética , Sequência de Bases , Cardiomegalia/metabolismo , Células Cultivadas , Feminino , Predisposição Genética para Doença , Humanos , Mutação , Fenótipo , Proteínas ras/metabolismo
2.
ACS Biomater Sci Eng ; 4(10): 3522-3533, 2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33465905

RESUMO

Engineered tissue barrier models offer in vitro alternatives in toxicology and disease research. To mimic barrier-tissue microenvironment, a porous membrane that can approach the stiffness of physiological basement membranes is required. While several biocompatible membranes with micrometer range thickness (10 µm) and a stiffness less than polystyrene (3 GPa) or polyethylene (PET, 2 GPa), have been developed, there has been little effort to optimize the process to enable rapid and reproducible pore production in these membranes. Here, we investigate the use of laser irradiation with femtosecond (fs) pulses because the combination of high-precision and cold-ablation causes minimal damage to polymeric membranes. This process enables automated, high-throughput and reproducible fabrication of thin, microporous membranes that can be utilized to culture cells at air-liquid interface (ALI), a unique culture technique that simulates the tissue-barrier microenvironment. We show the optimization of laser parameters on a thin polyurethane membrane and patterned pores with an average diameter of 5 µm. Tissue was cultured at ALI for 28 days to demonstrate the membrane's utility in constructing a tissue barrier model. These results confirm the utilization of fs laser machining as a viable method for creating a porous barrier substrate in tissue engineering platforms.

3.
JCI Insight ; 2(5): e91225, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28289718

RESUMO

Noonan syndrome (NS; MIM 163950) is an autosomal dominant disorder and a member of a family of developmental disorders termed "RASopathies," which are caused mainly by gain-of-function mutations in genes encoding RAS/MAPK signaling pathway proteins. Whole exome sequencing (WES) and trio-based genomic triangulation of a 15-year-old female with a clinical diagnosis of NS and concomitant cardiac hypertrophy and her unaffected parents identified a de novo variant in MRAS-encoded RAS-related protein 3 as the cause of her disease. Mutation analysis using in silico mutation prediction tools and molecular dynamics simulations predicted the identified variant, p.Gly23Val-MRAS, to be damaging to normal protein function and adversely affect effector interaction regions and the GTP-binding site. Subsequent ectopic expression experiments revealed a 40-fold increase in MRAS activation for p.Gly23Val-MRAS compared with WT-MRAS. Additional biochemical assays demonstrated enhanced activation of both RAS/MAPK pathway signaling and downstream gene expression in cells expressing p.Gly23Val-MRAS. Mutational analysis of MRAS in a cohort of 109 unrelated patients with phenotype-positive/genotype-negative NS and cardiac hypertrophy yielded another patient with a sporadic de novo MRAS variant (p.Thr68Ile, c.203C>T). Herein, we describe the discovery of mutations in MRAS in patients with NS and cardiac hypertrophy, establishing MRAS as the newest NS with cardiac hypertrophy-susceptibility gene.


Assuntos
Cardiomegalia/genética , Genes ras , Síndrome de Noonan/genética , Adolescente , Adulto , Sequência de Aminoácidos , Cardiomegalia/complicações , Criança , Pré-Escolar , Feminino , Células HEK293 , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Simulação de Dinâmica Molecular , Síndrome de Noonan/complicações , Homologia de Sequência de Aminoácidos , Sequenciamento do Exoma , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...