Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
EJNMMI Phys ; 11(1): 42, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691232

RESUMO

BACKGROUND: Respiratory motion artefacts are a pitfall in thoracic PET/CT imaging. A source of these motion artefacts within PET images is the CT used for attenuation correction of the images. The arbitrary respiratory phase in which the helical CT ( CT helical ) is acquired often causes misregistration between PET and CT images, leading to inaccurate attenuation correction of the PET image. As a result, errors in tumour delineation or lesion uptake values can occur. To minimise the effect of motion in PET/CT imaging, a data-driven gating (DDG)-based motion match (MM) algorithm has been developed that estimates the phase of the CT helical , and subsequently warps this CT to a given phase of the respiratory cycle, allowing it to be phase-matched to the PET. A set of data was used which had four-dimensional CT (4DCT) acquired alongside PET/CT. The 4DCT allowed ground truth CT phases to be generated and compared to the algorithm-generated motion match CT (MMCT). Measurements of liver and lesion margin positions were taken across CT images to determine any differences and establish how well the algorithm performed concerning warping the CT helical to a given phase (end-of-expiration, EE). RESULTS: Whilst there was a minor significance in the liver measurement between the 4DCT and MMCT ( p = 0.045 ), no significant differences were found between the 4DCT or MMCT for lesion measurements ( p = 1.0 ). In all instances, the CT helical was found to be significantly different from the 4DCT ( p < 0.001 ). Consequently, the 4DCT and MMCT can be considered equivalent with respect to warped CT generation, showing the DDG-based MM algorithm to be successful. CONCLUSION: The MM algorithm successfully enables the phase-matching of a CT helical to the EE of a ground truth 4DCT. This would reduce the motion artefacts caused by PET/CT registration without requiring additional patient dose (required for a 4DCT).

2.
Prostate ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654435

RESUMO

BACKGROUND: It is important to identify molecular features that improve prostate cancer (PCa) risk stratification before radical treatment with curative intent. Molecular analysis of historical diagnostic formalin-fixed paraffin-embedded (FFPE) prostate biopsies from cohorts with post-radiotherapy (RT) long-term clinical follow-up has been limited. Utilizing parallel sequencing modalities, we performed a proof-of-principle sequencing analysis of historical diagnostic FFPE prostate biopsies. We compared patients with (i) stable PCa (sPCa) postprimary or salvage RT, (ii) progressing PCa (pPCa) post-RT, and (iii) de novo metastatic PCa (mPCa). METHODS: A cohort of 19 patients with diagnostic prostate biopsies (n = 6 sPCa, n = 5 pPCa, n = 8 mPCa) and mean 4 years 10 months follow-up (diagnosed 2009-2016) underwent nucleic acid extraction from demarcated malignancy. Samples underwent 3'RNA sequencing (3'RNAseq) (n = 19), nanoString analysis (n = 12), and Illumina 850k methylation (n = 8) sequencing. Bioinformatic analysis was performed to coherently identify differentially expressed genes and methylated genomic regions (MGRs). RESULTS: Eighteen of 19 samples provided useable 3'RNAseq data. Principal component analysis (PCA) demonstrated similar expression profiles between pPCa and mPCa cases, versus sPCa. Coherently differentially methylated probes between these groups identified ~600 differentially MGRs. The top 50 genes with increased expression in pPCa patients were associated with reduced progression-free survival post-RT (p < 0.0001) in an external cohort. CONCLUSIONS: 3'RNAseq, nanoString and 850k-methylation analyses are each achievable from historical FFPE diagnostic pretreatment prostate biopsies, unlocking the potential to utilize large cohorts of historic clinical samples. Profiling similarities between individuals with pPCa and mPCa suggests biological similarities and historical radiological staging limitations, which warrant further investigation.

3.
Cell Death Dis ; 15(1): 32, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212297

RESUMO

Immune checkpoint blockade (ICB) provides effective and durable responses for several tumour types by unleashing an immune response directed against cancer cells. However, a substantial number of patients treated with ICB develop relapse or do not respond, which has been partly attributed to the immune-suppressive effect of tumour hypoxia. We have previously demonstrated that the mitochondrial complex III inhibitor atovaquone alleviates tumour hypoxia both in human xenografts and in cancer patients by decreasing oxygen consumption and consequently increasing oxygen availability in the tumour. Here, we show that atovaquone alleviates hypoxia and synergises with the ICB antibody anti-PD-L1, significantly improving the rates of tumour eradication in the syngeneic CT26 model of colorectal cancer. The synergistic effect between atovaquone and anti-PD-L1 relied on CD8+ T cells, resulted in the establishment of a tumour-specific memory immune response, and was not associated with any toxicity. We also tested atovaquone in combination with anti-PD-L1 in the LLC (lung) and MC38 (colorectal) cancer syngeneic models but, despite causing a considerable reduction in tumour hypoxia, atovaquone did not add any therapeutic benefit to ICB in these models. These results suggest that atovaquone has the potential to improve the outcomes of patients treated with ICB, but predictive biomarkers are required to identify individuals likely to benefit from this intervention.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons , Neoplasias , Humanos , Animais , Camundongos , Atovaquona/farmacologia , Atovaquona/uso terapêutico , Neoplasias/tratamento farmacológico , Linfócitos T CD8-Positivos , Imunoterapia/métodos , Antígeno B7-H1 , Microambiente Tumoral
5.
Cell Death Discov ; 9(1): 200, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386001

RESUMO

Colorectal cancer possesses marked intratumoral heterogeneity. While subclonal interactions between Vogelstein driver mutations have been extensively studied, less is known about competitive or cooperative effects between subclonal populations with other cancer driver mutations. FBXW7 is a cancer driver mutation which is present in close to 17% of colorectal cancer cells. In this study, we generated isogenic FBXW7 mutant cells using CRISPR-Cas9. We identified an upregulation of oxidative phosphorylation and DNA damage in FBXW7 mutant cells, which surprisingly proliferated at a decreased rate compared to wildtype cells. To determine subclonal interactions, wildtype and mutant FBXW7 cells were cocultured using a Transwell system. Wildtype cells cocultured with FBXW7 mutant cells similarly developed DNA damage which was not observed when wildtype cells were co-cultured with other wildtype cells, suggesting that FBXW7 mutant cells were inducing DNA damage in neighbouring wildtype cells. Using mass spectrometry, we identified AKAP8 as being secreted by FBXW7 mutant cells into the coculture media. Furthermore, overexpression of AKAP8 in wildtype cells recapitulated the DNA damage phenotype observed during coculture, while co-culture of wildtype cells with double mutant FBXW7-/-/AKAP8-/- cells abrogated the DNA damage phenotype. Here, we describe a hitherto unknown phenomenon of AKAP8-mediated DNA damage from FBXW7 mutant to neighbouring wildtype cells. Our findings demonstrate the importance of elucidating the local effect of cancer driver mutations between subclonal populations.

6.
Biosensors (Basel) ; 13(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36831962

RESUMO

The gold standard for diagnostics of SARS-CoV-2 (COVID-19) virus is based on real-time polymerase chain reaction (RT-PCR) using centralized PCR facilities and commercial viral RNA extraction kits. One of the key components of these kits are magnetic beads composed of silica coated magnetic iron oxide (Fe2O3 or Fe3O4) nanoparticles, needed for the selective extraction of RNA. At the beginning of the pandemic in 2019, due to a high demand across the world there were severe shortages of many reagents and consumables, including these magnetic beads required for testing for SARS-CoV-2. Laboratories needed to source these products elsewhere, preferably at a comparable or lower cost. Here, we describe the development of a simple, low-cost and scalable preparation of magnetic nanoparticles (MNPs) from biowaste and demonstrate their successful application in viral RNA extraction and the detection of COVID-19. These MNPs have a unique nanoplatelet shape with a high surface area, which are beneficial features, expected to provide improved RNA adsorption, better dispersion and processing ability compared with commercial spherical magnetic beads. Their performance in COVID-19 RNA extraction was evaluated in comparison with commercial magnetic beads and the results presented here showed comparable results for high throughput PCR analysis. The presented magnetic nanoplatelets generated from biomass waste are safe, low-cost, simple to produce in large scale and could provide a significantly reduced cost of nucleic acid extraction for SARS-CoV-2 and other DNA and RNA viruses.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Teste para COVID-19 , Laboratórios , Técnicas de Laboratório Clínico/métodos , RNA Viral/análise , Sensibilidade e Especificidade
8.
Clin Cancer Res ; 29(8): 1631-1642, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36689546

RESUMO

PURPOSE: DNA polymerase theta (Polθ, encoded by the POLQ gene) is a DNA repair enzyme critical for microhomology mediated end joining (MMEJ). Polθ has limited expression in normal tissues but is frequently overexpressed in cancer cells and, therefore, represents an ideal target for tumor-specific radiosensitization. In this study we evaluate whether targeting Polθ with novel small-molecule inhibitors is a feasible strategy to improve the efficacy of radiotherapy. EXPERIMENTAL DESIGN: We characterized the response to Polθ inhibition in combination with ionizing radiation in different cancer cell models in vitro and in vivo. RESULTS: Here, we show that ART558 and ART899, two novel and specific allosteric inhibitors of the Polθ DNA polymerase domain, potently radiosensitize tumor cells, particularly when combined with fractionated radiation. Importantly, noncancerous cells were not radiosensitized by Polθ inhibition. Mechanistically, we show that the radiosensitization caused by Polθ inhibition is most effective in replicating cells and is due to impaired DNA damage repair. We also show that radiosensitization is still effective under hypoxia, suggesting that these inhibitors may help overcome hypoxia-induced radioresistance. In addition, we describe for the first time ART899 and characterize it as a potent and specific Polθ inhibitor with improved metabolic stability. In vivo, the combination of Polθ inhibition using ART899 with fractionated radiation is well tolerated and results in a significant reduction in tumor growth compared with radiation alone. CONCLUSIONS: These results pave the way for future clinical trials of Polθ inhibitors in combination with radiotherapy.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/radioterapia , Linhagem Celular Tumoral
9.
Sci Rep ; 12(1): 21746, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36526815

RESUMO

Positron emission tomography (PET)/computed tomography (CT) using the radiotracer 18F-Fluoromisonidazole (FMISO) has been widely employed to image tumour hypoxia and is of interest to help develop novel hypoxia modifiers and guide radiation treatment planning. Yet, the optimal post-injection (p.i.) timing of hypoxic imaging remains questionable. Therefore, we investigated the correlation between hypoxia-related quantitative values in FMISO-PET acquired at 2 and 4 h p.i. in patients with non-small cell lung cancer (NSCLC). Patients with resectable NSCLC participated in the ATOM clinical trial (NCT02628080) which investigated the hypoxia modifying effects of atovaquone. Two-hour and four-hour FMISO PET/CT images acquired at baseline and pre-surgery visits (n = 58) were compared. Cohort 1 (n = 14) received atovaquone treatment, while cohort 2 (n = 15) did not. Spearman's rank correlation coefficients (ρ) assessed the relationship between hypoxia-related metrics, including standardised uptake value (SUV), tumour-to-blood ratio (TBR), and tumour hypoxic volume (HV) defined by voxels with TBR ≥ 1.4. As the primary imaging-related trial endpoint used to evaluate the action of atovaquone on tumour hypoxia in patients with NSCLC was change in tumour HV from baseline, this was also assessed in patients (n = 20) with sufficient baseline 2- and 4-h scan HV to reliably measure change (predefined as ≥ 1.5 mL). Tumours were divided into four subregions or distance categories: edge, outer, inner, and centre, using MATLAB. In tumours overall, strong correlation (P < 0.001) was observed for SUVmax ρ = 0.87, SUVmean ρ = 0.91, TBRmax ρ = 0.83 and TBRmean ρ = 0.81 between 2- and 4-h scans. Tumour HV was moderately correlated (P < 0.001) with ρ = 0.69 between 2- and 4-h scans. Yet, in tumour subregions, the correlation of HV decreased from the centre ρ = 0.71 to the edge ρ = 0.45 (P < 0.001). SUV, TBR, and HV values were consistently higher on 4-h scans than on 2-h scans, indicating better tracer-to-background contrast. For instance, for TBRmax, the mean, median, and interquartile range were 1.9, 1.7, and 1.6-2.0 2-h p.i., and 2.6, 2.4, and 2.0-3.0 4-h p.i., respectively. Our results support that FMISO-PET scans should be performed at 4 h p.i. to evaluate tumour hypoxia in NSCLC.Trial registration: ClinicalTrials.gov, NCT02628080. Registered 11/12/2015, https://clinicaltrials.gov/ct2/show/NCT02628080 .


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Atovaquona , Compostos Radiofarmacêuticos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Misonidazol , Tomografia por Emissão de Pósitrons/métodos , Hipóxia/diagnóstico por imagem , Hipóxia Celular
10.
Mol Cell ; 82(24): 4664-4680.e9, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36455556

RESUMO

POLQ is a key effector of DSB repair by microhomology-mediated end-joining (MMEJ) and is overexpressed in many cancers. POLQ inhibitors confer synthetic lethality in HR and Shieldin-deficient cancer cells, which has been proposed to reflect a critical dependence on the DSB repair pathway by MMEJ. Whether POLQ also operates independent of MMEJ remains unexplored. Here, we show that POLQ-deficient cells accumulate post-replicative ssDNA gaps upon BRCA1/2 loss or PARP inhibitor treatment. Biochemically, cooperation between POLQ helicase and polymerase activities promotes RPA displacement and ssDNA-gap fill-in, respectively. POLQ is also capable of microhomology-mediated gap skipping (MMGS), which generates deletions during gap repair that resemble the genomic scars prevalent in POLQ overexpressing cancers. Our findings implicate POLQ in mutagenic post-replicative gap sealing, which could drive genome evolution in cancer and whose loss places a critical dependency on HR for gap protection and repair and cellular viability.


Assuntos
Quebras de DNA de Cadeia Dupla , Neoplasias , Humanos , Replicação do DNA/genética , Instabilidade Genômica , DNA de Cadeia Simples/genética , Mutações Sintéticas Letais , Reparo do DNA por Junção de Extremidades , Neoplasias/genética
11.
J Neurooncol ; 160(3): 577-589, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36434486

RESUMO

PURPOSE: Gliomas are the most commonly occurring brain tumour in adults and there remains no cure for these tumours with treatment strategies being based on tumour grade. All treatment options aim to prolong survival, maintain quality of life and slow the inevitable progression from low-grade to high-grade. Despite imaging advancements, the only reliable method to grade a glioma is to perform a biopsy, and even this is fraught with errors associated with under grading. Positron emission tomography (PET) imaging with amino acid tracers such as [18F]fluorodopa (18F-FDOPA), [11C]methionine (11C-MET), [18F]fluoroethyltyrosine (18F-FET), and 18F-FDOPA are being increasingly used in the diagnosis and management of gliomas. METHODS: In this review we discuss the literature available on the ability of 18F-FDOPA-PET to distinguish low- from high-grade in newly diagnosed gliomas. RESULTS: In 2016 the Response Assessment in Neuro-Oncology (RANO) and European Association for Neuro-Oncology (EANO) published recommendations on the clinical use of PET imaging in gliomas. However, since these recommendations there have been a number of studies performed looking at whether 18F-FDOPA-PET can identify areas of high-grade transformation before the typical radiological features of transformation such as contrast enhancement are visible on standard magnetic resonance imaging (MRI). CONCLUSION: Larger studies are needed to validate 18F-FDOPA-PET as a non-invasive marker of glioma grade and prediction of tumour molecular characteristics which could guide decisions surrounding surgical resection.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Qualidade de Vida , Gradação de Tumores , Glioma/patologia , Tomografia por Emissão de Pósitrons/métodos , Neoplasias Encefálicas/patologia , Imageamento por Ressonância Magnética
12.
STAR Protoc ; 3(2): 101355, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35542177

RESUMO

The colony formation assay is the gold-standard technique to assess cell viability after treatment with cytotoxic reagents, ionizing radiation, and cytotoxic combinatorial treatments. This protocol describes a high-throughput automated and high-content imaging approach to screen siRNA molecular libraries in HeLa cervical cancer cells in 96-well format. We detail reverse transfection of cells with siRNAs, followed by ionizing radiation, fixing, and staining of the plates for automated colony counting. This protocol can be used across a broad range of cell types. For complete details on the use and execution of this protocol, please refer to Tiwana et al. (2015).


Assuntos
Ensaios de Triagem em Larga Escala , Radiação Ionizante , Biblioteca Gênica , Ensaios de Triagem em Larga Escala/métodos , RNA Interferente Pequeno/genética , Transfecção
13.
Br J Cancer ; 126(7): 971-972, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35197582

RESUMO

The link between hypoxic conditions and radiation sensitivity is well-established, however the dynamic nature of hypoxia is often overlooked. The contribution of acute/transient hypoxia versus chronic conditions to radiosensitivity has been investigated by Wadsworth et al. using two hypoxia markers and pentoxifylline to increase blood flow to regions of transient hypoxia.


Assuntos
Neoplasias , Tolerância a Radiação , Contagem de Células , Hipóxia Celular , Humanos , Hipóxia , Neoplasias/radioterapia
14.
Br J Cancer ; 126(9): 1241-1243, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35217798

RESUMO

Combined chemoradiotherapy is the standard of care for locally advanced solid tumours. However, systemic toxicity may limit the delivery of planned chemotherapy. New approaches such as radiation-induced prodrug activation might diminish systemic toxicity, while retaining anticancer benefit. Organic azides have recently been shown to be reduced and activated under hypoxic conditions with clinically relevant doses of radiotherapy, uncaging pazopanib and doxorubicin in preclinical models with similar efficacy as the drug, but lower systemic toxicity. This approach may be relevant to the chemoradiation of glioblastoma and other solid tumours and offers potential for switching on drug delivery from implanted devices. The inclusion of reporters to confirm drug activation, avoidance of off-target effects and synchronisation of irradiation with optimal intratumoral drug concentration will be critical. Further preclinical validation studies of this approach should be encouraged.


Assuntos
Neoplasias , Pró-Fármacos , Quimiorradioterapia , Terapia Combinada , Doxorrubicina , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Pró-Fármacos/uso terapêutico
15.
Open Forum Infect Dis ; 9(3): ofac002, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35169588

RESUMO

BACKGROUND: As of mid-2021, Australia's only nationwide coronavirus disease 2019 (COVID-19) epidemic occurred in the first 6 months of the pandemic. Subsequently, there has been limited transmission in most states and territories. Understanding community spread during the first wave was hampered by initial limitations on testing and surveillance. To characterize the prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibody seroprevalence generated during this time, we undertook Australia's largest national SARS-CoV-2 serosurvey. METHODS: Between June 19 and August 6, 2020, residual specimens were sampled from people undergoing general pathology testing (all ages), women attending antenatal screening (20-39 years), and blood donors (20-69 years) based on the Australian population's age and geographic distributions. Specimens were tested by Wantai total SARS-CoV-2-antibody assay. Seroprevalence estimates adjusted for test performance were produced. The SARS-CoV-2 antibody-positive specimens were characterized with microneutralization assays. RESULTS: Of 11 317 specimens (5132 general pathology; 2972 antenatal; 3213 blood-donors), 71 were positive for SARS-CoV-2-specific antibodies. Seroprevalence estimates were 0.47% (95% credible interval [CrI], 0.04%-0.89%), 0.25% (CrI, 0.03%-0.54%), and 0.23% (CrI, 0.04%-0.54%), respectively. No seropositive specimens had neutralizing antibodies. CONCLUSIONS: Australia's seroprevalence was extremely low (<0.5%) after the only national COVID-19 wave thus far. These data and the subsequent limited community transmission highlight the population's naivety to SARS-CoV-2 and the urgency of increasing vaccine-derived protection.

16.
EJNMMI Res ; 11(1): 130, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34964932

RESUMO

BACKGROUND: Tumour hypoxia promotes an aggressive tumour phenotype and enhances resistance to anticancer treatments. Following the recent observation that the mitochondrial inhibitor atovaquone increases tumour oxygenation in NSCLC, we sought to assess whether atovaquone affects tumour subregions differently depending on their level of hypoxia. METHODS: Patients with resectable NSCLC participated in the ATOM trial (NCT02628080). Cohort 1 (n = 15) received atovaquone treatment, whilst cohort 2 (n = 15) did not. Hypoxia-related metrics, including change in mean tumour-to-blood ratio, tumour hypoxic volume, and fraction of hypoxic voxels, were assessed using hypoxia PET imaging. Tumours were divided into four subregions or distance categories: edge, outer, inner, and centre, using MATLAB. RESULTS: Atovaquone-induced reduction in tumour hypoxia mostly occurred in the inner and outer tumour subregions, and to a lesser extent in the centre subregion. Atovaquone did not seem to act in the edge subregion, which was the only tumour subregion that was non-hypoxic at baseline. Notably, the most intensely hypoxic tumour voxels, and therefore the most radiobiologically resistant areas, were subject to the most pronounced decrease in hypoxia in the different subregions. CONCLUSIONS: This study provides insights into the action of atovaquone in tumour subregions that help to better understand its role as a novel tumour radiosensitiser. TRIAL REGISTRATION: ClinicalTrials.gov, NCT0262808. Registered 11th December 2015, https://clinicaltrials.gov/ct2/show/NCT02628080.

17.
Cell Rep ; 37(10): 110080, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879279

RESUMO

DNA-protein crosslinks (DPCs) are a specific type of DNA lesion in which proteins are covalently attached to DNA. Unrepaired DPCs lead to genomic instability, cancer, neurodegeneration, and accelerated aging. DPC proteolysis was recently identified as a specialized pathway for DPC repair. The DNA-dependent protease SPRTN and the 26S proteasome emerged as two independent proteolytic systems. DPCs are also repaired by homologous recombination (HR), a canonical DNA repair pathway. While studying the cellular response to DPC formation, we identify ubiquitylation and SUMOylation as two major signaling events in DNA replication-coupled DPC repair. DPC ubiquitylation recruits SPRTN to repair sites, promoting DPC removal. DPC SUMOylation prevents DNA double-strand break formation, HR activation, and potentially deleterious genomic rearrangements. In this way, SUMOylation channels DPC repair toward SPRTN proteolysis, which is a safer pathway choice for DPC repair and prevention of genomic instability.


Assuntos
Dano ao DNA , Reparo do DNA , DNA de Neoplasias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Sumoilação , Quebras de DNA de Cadeia Dupla , Replicação do DNA , DNA de Neoplasias/biossíntese , DNA de Neoplasias/genética , Proteínas de Ligação a DNA/genética , Feminino , Células HEK293 , Células HeLa , Recombinação Homóloga , Humanos , Masculino , Proteólise , Mutações Sintéticas Letais
18.
Radiother Oncol ; 165: 119-125, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34718053

RESUMO

INTRODUCTION: In 'IDEAL-6' patients (N = 78) treated for locally-advanced non-small-cell lung cancer using isotoxically dose-escalated radiotherapy, overall survival (OS) was associated more strongly with VLAwall-64-73-EQD2, the left atrial (LA) wall volume receiving 64-73 Gy equivalent dose in 2 Gy fractions (EQD2), than with whole-heart irradiation measures. Here we test this in an independent cohort 'OX-RT' (N = 64) treated routinely. METHODS: Using Cox regression analysis we assessed how strongly OS was associated with VLAwall-64-73-EQD2, with whole-heart volumes receiving 64-73 Gy EQD2 or doses above 10-to-70 Gy thresholds, and with principal components of whole-heart dose-distributions. Additionally, we tested associations between OS and volumes of cardiac substructures receiving dose-ranges described by whole-heart principal components significantly associated with OS. RESULTS: In univariable analyses of OX-RT, OS was associated more strongly with VLAwall-64-73-EQD2 than with whole-heart irradiation measures, but more strongly still with VAortV-29-38-EQD2, the volume of the aortic valve region receiving 29-38 Gy EQD2. The best multivariable OS model included LA wall and aortic valve region mean doses, and the aortic valve volume receiving ≥38 Gy EQD2, VAortV-38-EQD2. In a subsidiary analysis of IDEAL-6, the best multivariable model included VLAwall-64-73-EQD2, VAortV-29-38-EQD2, VAortV-38-EQD2 and mean aortic valve dose. CONCLUSION: We propose reducing heart mean doses to the lowest levels possible while meeting protocol dose-limits for lung, oesophagus, proximal bronchial tree, cord and brachial plexus. This in turn achieves large reductions in VAortV-29-38-EQD2 and VLAwall-64-73-EQD2, and we plan to closely monitor patients with values of these measures still >0% (their median value in OX-RT) following reduction.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Átrios do Coração , Humanos , Neoplasias Pulmonares/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
19.
Emerg Infect Dis ; 27(8): 2219-2221, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34287141

RESUMO

Hotel quarantine for international travelers has been used to prevent coronavirus disease spread into Australia. A quarantine hotel-associated community outbreak was detected in South Australia. Real-time genomic sequencing enabled rapid confirmation tracking the outbreak to a recently returned traveler and linked 2 cases of infection in travelers at the same facility.


Assuntos
COVID-19 , Quarentena , Austrália/epidemiologia , Surtos de Doenças , Humanos , SARS-CoV-2
20.
Clin Cancer Res ; 27(9): 2459-2469, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33597271

RESUMO

PURPOSE: Tumor hypoxia fuels an aggressive tumor phenotype and confers resistance to anticancer treatments. We conducted a clinical trial to determine whether the antimalarial drug atovaquone, a known mitochondrial inhibitor, reduces hypoxia in non-small cell lung cancer (NSCLC). PATIENTS AND METHODS: Patients with NSCLC scheduled for surgery were recruited sequentially into two cohorts: cohort 1 received oral atovaquone at the standard clinical dose of 750 mg twice daily, while cohort 2 did not. Primary imaging endpoint was change in tumor hypoxic volume (HV) measured by hypoxia PET-CT. Intercohort comparison of hypoxia gene expression signatures using RNA sequencing from resected tumors was performed. RESULTS: Thirty patients were evaluable for hypoxia PET-CT analysis, 15 per cohort. Median treatment duration was 12 days. Eleven (73.3%) atovaquone-treated patients had meaningful HV reduction, with median change -28% [95% confidence interval (CI), -58.2 to -4.4]. In contrast, median change in untreated patients was +15.5% (95% CI, -6.5 to 35.5). Linear regression estimated the expected mean HV was 55% (95% CI, 24%-74%) lower in cohort 1 compared with cohort 2 (P = 0.004), adjusting for cohort, tumor volume, and baseline HV. A key pharmacodynamics endpoint was reduction in hypoxia-regulated genes, which were significantly downregulated in atovaquone-treated tumors. Data from multiple additional measures of tumor hypoxia and perfusion are presented. No atovaquone-related adverse events were reported. CONCLUSIONS: This is the first clinical evidence that targeting tumor mitochondrial metabolism can reduce hypoxia and produce relevant antitumor effects at the mRNA level. Repurposing atovaquone for this purpose may improve treatment outcomes for NSCLC.


Assuntos
Atovaquona/farmacologia , Regulação Neoplásica da Expressão Gênica , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Hipóxia Tumoral/efeitos dos fármacos , Hipóxia Tumoral/genética , Atovaquona/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Metabolismo Energético , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Imagem Molecular , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fator de Transcrição STAT3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...