Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38584326

RESUMO

Meiotic crossovers (COs) generate genetic diversity and are crucial for viable gamete production. Plant COs are typically limited to 1-3 per chromosome pair, constraining the development of improved varieties, which in wheat is exacerbated by an extreme distal localisation bias. Advances in wheat genomics and related technologies provide new opportunities to investigate, and possibly modify, recombination in this important crop species. Here, we investigate the disruption of FIGL1 in tetraploid and hexaploid wheat as a potential strategy for modifying CO frequency/position. We analysed figl1 mutants and virus-induced gene silencing lines cytogenetically. Genetic mapping was performed in the hexaploid. FIGL1 prevents abnormal meiotic chromosome associations/fragmentation in both ploidies. It suppresses class II COs in the tetraploid such that CO/chiasma frequency increased 2.1-fold in a figl1 msh5 quadruple mutant compared with a msh5 double mutant. It does not appear to affect class I COs based on HEI10 foci counts in a hexaploid figl1 triple mutant. Genetic mapping in the triple mutant suggested no significant overall increase in total recombination across examined intervals but revealed large increases in specific individual intervals. Notably, the tetraploid figl1 double mutant was sterile but the hexaploid triple mutant was moderately fertile, indicating potential utility for wheat breeding.

2.
Nat Commun ; 14(1): 6716, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872134

RESUMO

Meiotic crossovers can be formed through the interfering pathway, in which one crossover prevents another from forming nearby, or by an independent non-interfering pathway. In Arabidopsis, local sequence polymorphism between homologs can stimulate interfering crossovers in a MSH2-dependent manner. To understand how MSH2 regulates crossovers formed by the two pathways, we combined Arabidopsis mutants that elevate non-interfering crossovers with msh2 mutants. We demonstrate that MSH2 blocks non-interfering crossovers at polymorphic loci, which is the opposite effect to interfering crossovers. We also observe MSH2-independent crossover inhibition at highly polymorphic sites. We measure recombination along the chromosome arms in lines differing in patterns of heterozygosity and observe a MSH2-dependent crossover increase at the boundaries between heterozygous and homozygous regions. Here, we show that MSH2 is a master regulator of meiotic DSB repair in Arabidopsis, with antagonistic effects on interfering and non-interfering crossovers, which shapes the crossover landscape in relation to interhomolog polymorphism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Troca Genética , Proteína 2 Homóloga a MutS/genética , Proteínas de Arabidopsis/genética , Polimorfismo Genético , Meiose/genética
3.
Front Plant Sci ; 14: 1188347, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284727

RESUMO

During meiosis, the chromosome axes and synaptonemal complex mediate chromosome pairing and homologous recombination to maintain genomic stability and accurate chromosome segregation. In plants, ASYNAPSIS 1 (ASY1) is a key component of the chromosome axis that promotes inter-homolog recombination, synapsis and crossover formation. Here, the function of ASY1 has been cytologically characterized in a series of hypomorphic wheat mutants. In tetraploid wheat, asy1 hypomorphic mutants experience a reduction in chiasmata (crossovers) in a dosage-specific manner, resulting in failure to maintain crossover (CO) assurance. In mutants with only one functional copy of ASY1, distal chiasmata are maintained at the expense of proximal and interstitial chiasmata, indicating that ASY1 is required to promote chiasma formation away from the chromosome ends. Meiotic prophase I progression is delayed in asy1 hypomorphic mutants and is arrested in asy1 null mutants. In both tetraploid and hexaploid wheat, single asy1 mutants exhibit a high degree of ectopic recombination between multiple chromosomes at metaphase I. To explore the nature of the ectopic recombination, Triticum turgidum asy1b-2 was crossed with wheat-wild relative Aegilops variabilis. Homoeologous chiasmata increased 3.75-fold in Ttasy1b-2/Ae. variabilis compared to wild type/Ae. variabilis, indicating that ASY1 suppresses chiasma formation between divergent, but related chromosomes. These data suggest that ASY1 promotes recombination along the chromosome arms of homologous chromosomes whilst suppressing recombination between non-homologous chromosomes. Therefore, asy1 mutants could be utilized to increase recombination between wheat wild relatives and elite varieties for expediting introgression of important agronomic traits.

4.
Plant J ; 114(1): 209-224, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36710629

RESUMO

Reproductive success hinges on precisely coordinated meiosis, yet our understanding of how structural rearrangements of chromatin and phase transitions during meiosis are transcriptionally regulated is limited. In crop plants, detailed analysis of the meiotic transcriptome could identify regulatory genes and epigenetic regulators that can be targeted to increase recombination rates and broaden genetic variation, as well as provide a resource for comparison among eukaryotes of different taxa to answer outstanding questions about meiosis. We conducted a meiotic stage-specific analysis of messenger RNA (mRNA), small non-coding RNA (sncRNA), and long intervening/intergenic non-coding RNA (lincRNA) in wheat (Triticum aestivum L.) and revealed novel mechanisms of meiotic transcriptional regulation and meiosis-specific transcripts. Amidst general repression of mRNA expression, significant enrichment of ncRNAs was identified during prophase I relative to vegetative cells. The core meiotic transcriptome was comprised of 9309 meiosis-specific transcripts, 48 134 previously unannotated meiotic transcripts, and many known and novel ncRNAs differentially expressed at specific stages. The abundant meiotic sncRNAs controlled the reprogramming of central metabolic pathways by targeting genes involved in photosynthesis, glycolysis, hormone biosynthesis, and cellular homeostasis, and lincRNAs enhanced the expression of nearby genes. Alternative splicing was not evident in this polyploid species, but isoforms were switched at phase transitions. The novel, stage-specific regulatory controls uncovered here challenge the conventional understanding of this crucial biological process and provide a new resource of requisite knowledge for those aiming to directly modulate meiosis to improve crop plants. The wheat meiosis transcriptome dataset can be queried for genes of interest using an eFP browser located at https://bar.utoronto.ca/efp_wheat/cgi-bin/efpWeb.cgi?dataSource=Wheat_Meiosis.


Assuntos
Transcriptoma , Triticum , Triticum/genética , Triticum/metabolismo , Meiose/genética , RNA Mensageiro/genética , RNA não Traduzido/genética
5.
Plant Biotechnol J ; 21(2): 405-418, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36373224

RESUMO

Increasing crop yields through plant breeding is time consuming and laborious, with the generation of novel combinations of alleles being limited by chromosomal linkage blocks and linkage-drag. Meiotic recombination is essential to create novel genetic variation via the reshuffling of parental alleles. The exchange of genetic information between homologous chromosomes occurs at crossover (CO) sites but CO frequency is often low and unevenly distributed. This bias creates the problem of linkage-drag in recombination 'cold' regions, where undesirable variation remains linked to useful traits. In plants, programmed meiosis-specific DNA double-strand breaks, catalysed by the SPO11 complex, initiate the recombination pathway, although only ~5% result in the formation of COs. To study the role of SPO11-1 in wheat meiosis, and as a prelude to manipulation, we used CRISPR/Cas9 to generate edits in all three SPO11-1 homoeologues of hexaploid wheat. Characterization of progeny lines shows plants deficient in all six SPO11-1 copies fail to undergo chromosome synapsis, lack COs and are sterile. In contrast, lines carrying a single copy of any one of the three wild-type homoeologues are phenotypically indistinguishable from unedited plants both in terms of vegetative growth and fertility. However, cytogenetic analysis of the edited plants suggests that homoeologues differ in their ability to generate COs and in the dynamics of synapsis. In addition, we show that the transformation of wheat mutants carrying six edited copies of SPO11-1 with the TaSPO11-1B gene, restores synapsis, CO formation, and fertility and hence opens a route to modifying recombination in this agronomically important crop.


Assuntos
Sistemas CRISPR-Cas , Triticum , Triticum/genética , Sistemas CRISPR-Cas/genética , Melhoramento Vegetal , Cromossomos , Meiose/genética
6.
Biochem Soc Trans ; 50(4): 1179-1186, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35901450

RESUMO

Wheat is a major cereal crop that possesses a large allopolyploid genome formed through hybridisation of tetraploid and diploid progenitors. During meiosis, crossovers (COs) are constrained in number to 1-3 per chromosome pair that are predominantly located towards the chromosome ends. This reduces the probability of advantageous traits recombining onto the same chromosome, thus limiting breeding. Therefore, understanding the underlying factors controlling meiotic recombination may provide strategies to unlock the genetic potential in wheat. In this mini-review, we will discuss the factors associated with restricted CO formation in wheat, such as timing of meiotic events, chromatin organisation, pre-meiotic DNA replication and dosage of CO genes, as a means to modulate recombination.


Assuntos
Troca Genética , Triticum , Cromossomos , Recombinação Homóloga , Meiose , Triticum/genética
7.
Nat Commun ; 13(1): 3644, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35752733

RESUMO

FANCM suppresses crossovers in plants by unwinding recombination intermediates. In wheat, crossovers are skewed toward the chromosome ends, thus limiting generation of novel allelic combinations. Here, we observe that FANCM maintains the obligate crossover in tetraploid and hexaploid wheat, thus ensuring that every chromosome pair exhibits at least one crossover, by localizing class I crossover protein HEI10 at pachytene. FANCM also suppresses class II crossovers that increased 2.6-fold in fancm msh5 quadruple mutants. These data are consistent with a role for FANCM in second-end capture of class I designated crossover sites, whilst FANCM is also required to promote formation of non-crossovers. In hexaploid wheat, genetic mapping reveals that crossovers increase by 31% in fancm compared to wild type, indicating that fancm could be an effective tool to accelerate breeding. Crossover rate differences in fancm correlate with wild type crossover distributions, suggesting that chromatin may influence the recombination landscape in similar ways in both wild type and fancm.


Assuntos
Troca Genética , Triticum , Meiose/genética , Melhoramento Vegetal , Triticum/genética
8.
J Exp Bot ; 73(16): 5543-5558, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35617147

RESUMO

Pollen development is dependent on the tapetum, a sporophytic anther cell layer surrounding the microspores that functions in pollen wall formation but is also essential for meiosis-associated development. There is clear evidence of crosstalk and co-regulation between the tapetum and microspores, but how this is achieved is currently not characterized. ABORTED MICROSPORES (AMS), a tapetum transcription factor, is important for pollen wall formation, but also has an undefined role in early pollen development. We conducted a detailed investigation of chromosome behaviour, cytokinesis, radial microtubule array (RMA) organization, and callose formation in the ams mutant. Early meiosis initiates normally in ams, shows delayed progression after the pachytene stage, and then fails during late meiosis, with disorganized RMA, defective cytokinesis, abnormal callose formation, and microspore degeneration, alongside abnormal tapetum development. Here, we show that selected meiosis-associated genes are directly repressed by AMS, and that AMS is essential for late meiosis progression. Our findings indicate that AMS has a dual function in tapetum-meiocyte crosstalk by playing an important regulatory role during late meiosis, in addition to its previously characterized role in pollen wall formation. AMS is critical for RMA organization, callose deposition, and therefore cytokinesis, and is involved in the crosstalk between the gametophyte and sporophytic tissues, which enables synchronous development of tapetum and microspores.


Assuntos
Regulação da Expressão Gênica de Plantas , Pólen , Células Germinativas Vegetais , Meiose , Pólen/metabolismo , Fatores de Transcrição/metabolismo
9.
Genome Res ; 31(9): 1614-1628, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34426514

RESUMO

The hexaploid bread wheat genome comprises over 16 gigabases of sequence across 21 chromosomes. Meiotic crossovers are highly polarized along the chromosomes, with elevation in the gene-dense distal regions and suppression in the Gypsy retrotransposon-dense centromere-proximal regions. We profiled the genomic landscapes of the meiotic recombinase DMC1 and the chromosome axis protein ASY1 in wheat and investigated their relationships with crossovers, chromatin state, and genetic diversity. DMC1 and ASY1 chromatin immunoprecipitation followed by sequencing (ChIP-seq) revealed strong co-enrichment in the distal, crossover-active regions of the wheat chromosomes. Distal ChIP-seq enrichment is consistent with spatiotemporally biased cytological immunolocalization of DMC1 and ASY1 close to the telomeres during meiotic prophase I. DMC1 and ASY1 ChIP-seq peaks show significant overlap with genes and transposable elements in the Mariner and Mutator superfamilies. However, DMC1 and ASY1 ChIP-seq peaks were detected along the length of each chromosome, including in low-crossover regions. At the fine scale, crossover elevation at DMC1 and ASY1 peaks and genes correlates with enrichment of the Polycomb histone modification H3K27me3. This indicates a role for facultative heterochromatin, coincident with high DMC1 and ASY1, in promoting crossovers in wheat and is reflected in distalized H3K27me3 enrichment observed via ChIP-seq and immunocytology. Genes with elevated crossover rates and high DMC1 and ASY1 ChIP-seq signals are overrepresented for defense-response and immunity annotations, have higher sequence polymorphism, and exhibit signatures of selection. Our findings are consistent with meiotic recombination promoting genetic diversity, shaping host-pathogen co-evolution, and accelerating adaptation by increasing the efficiency of selection.


Assuntos
Cromossomos de Plantas , Meiose , Triticum , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromossomos de Plantas/genética , Proteínas de Ligação a DNA/genética , Heterocromatina , Histonas/genética , Meiose/genética , Triticum/genética
10.
Front Plant Sci ; 12: 631323, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679846

RESUMO

Meiotic recombination generates genetic variation and provides physical links between homologous chromosomes (crossovers) essential for accurate segregation. In cereals the distribution of crossovers, cytologically evident as chiasmata, is biased toward the distal regions of chromosomes. This creates a bottleneck for plant breeders in the development of varieties with improved agronomic traits, as genes situated in the interstitial and centromere proximal regions of chromosomes rarely recombine. Recent advances in wheat genomics and genome engineering combined with well-developed wheat cytogenetics offer new opportunities to manipulate recombination and unlock genetic variation. As a basis for these investigations we have carried out a detailed analysis of meiotic progression in hexaploid wheat (Triticum aestivum) using immunolocalization of chromosome axis, synaptonemal complex and recombination proteins. 5-Bromo-2'-deoxyuridine (BrdU) labeling was used to determine the chronology of key events in relation to DNA replication. Axis morphogenesis, synapsis and recombination initiation were found to be spatio-temporally coordinated, beginning in the gene-dense distal chromosomal regions and later occurring in the interstitial/proximal regions. Moreover, meiotic progression in the distal regions was coordinated with the conserved chromatin cycles that are a feature of meiosis. This mirroring of the chiasma bias was also evident in the distribution of the gene-associated histone marks, H3K4me3 and H3K27me3; the repeat-associated mark, H3K27me1; and H3K9me3. We believe that this study provides a cytogenetic framework for functional studies and ongoing initiatives to manipulate recombination in the wheat genome.

11.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33782125

RESUMO

The synaptonemal complex is a tripartite proteinaceous ultrastructure that forms between homologous chromosomes during prophase I of meiosis in the majority of eukaryotes. It is characterized by the coordinated installation of transverse filament proteins between two lateral elements and is required for wild-type levels of crossing over and meiotic progression. We have generated null mutants of the duplicated Arabidopsis transverse filament genes zyp1a and zyp1b using a combination of T-DNA insertional mutants and targeted CRISPR/Cas mutagenesis. Cytological and genetic analysis of the zyp1 null mutants reveals loss of the obligate chiasma, an increase in recombination map length by 1.3- to 1.7-fold and a virtual absence of cross-over (CO) interference, determined by a significant increase in the number of double COs. At diplotene, the numbers of HEI10 foci, a marker for Class I interference-sensitive COs, are twofold greater in the zyp1 mutant compared to wild type. The increase in recombination in zyp1 does not appear to be due to the Class II interference-insensitive COs as chiasmata were reduced by ∼52% in msh5/zyp1 compared to msh5 These data suggest that ZYP1 limits the formation of closely spaced Class I COs in Arabidopsis Our data indicate that installation of ZYP1 occurs at ASY1-labeled axial bridges and that loss of the protein disrupts progressive coalignment of the chromosome axes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Troca Genética , Arabidopsis , Proteínas de Arabidopsis/genética , Meiose , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/metabolismo
12.
Front Plant Sci ; 11: 600820, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304374

RESUMO

The mammalian BREAST CANCER 2 (BRCA2) gene is a tumor suppressor that plays a crucial role in DNA repair and homologous recombination (HR). Here, we report the identification and characterization of OsBRCA2, the rice orthologue of human BRCA2. Osbrca2 mutant plants exhibit normal vegetative growth but experience complete male and female sterility as a consequence of severe meiotic defects. Pairing, synapsis and recombination are impaired in osbrca2 male meiocytes, leading to chromosome entanglements and fragmentation. In the absence of OsBRCA2, localization to the meiotic chromosome axes of the strand-invasion proteins OsRAD51 and OsDMC1 is severely reduced and in vitro OsBRCA2 directly interacts with OsRAD51 and OsDMC1. These results indicate that OsBRCA2 is essential for facilitating the loading of OsRAD51 and OsDMC1 onto resected ends of programmed double-strand breaks (DSB) during meiosis to promote single-end invasions of homologous chromosomes and accurate recombination. In addition, treatment of osbrca2-1 seedlings with mitomycin C (MMC) led to hypersensitivity. As MMC is a genotoxic agent that creates DNA lesions in the somatic cells that can only be repaired by HR, these results suggest that OsBRCA2 has a conserved role in DSB repair and HR in rice.

13.
EMBO J ; 39(21): e104858, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32935357

RESUMO

During meiosis, DNA double-strand breaks undergo interhomolog repair to yield crossovers between homologous chromosomes. To investigate how interhomolog sequence polymorphism affects crossovers, we sequenced multiple recombinant populations of the model plant Arabidopsis thaliana. Crossovers were elevated in the diverse pericentromeric regions, showing a local preference for polymorphic regions. We provide evidence that crossover association with elevated diversity is mediated via the Class I crossover formation pathway, although very high levels of diversity suppress crossovers. Interhomolog polymorphism causes mismatches in recombining molecules, which can be detected by MutS homolog (MSH) mismatch repair protein heterodimers. Therefore, we mapped crossovers in a msh2 mutant, defective in mismatch recognition, using multiple hybrid backgrounds. Although total crossover numbers were unchanged in msh2 mutants, recombination was remodelled from the diverse pericentromeres towards the less-polymorphic sub-telomeric regions. Juxtaposition of megabase heterozygous and homozygous regions causes crossover remodelling towards the heterozygous regions in wild type Arabidopsis, but not in msh2 mutants. Immunostaining showed that MSH2 protein accumulates on meiotic chromosomes during prophase I, consistent with MSH2 regulating meiotic recombination. Our results reveal a pro-crossover role for MSH2 in regions of higher sequence diversity in A. thaliana.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Polimorfismo Genético , Ciclo Celular , Cromatina , Cromossomos , Troca Genética , Reparo do DNA , Replicação do DNA , Recombinação Homóloga , Meiose , Mutagênese , Polimorfismo de Nucleotídeo Único
14.
PLoS Genet ; 16(7): e1008900, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32667955

RESUMO

In this study we performed a genotype-phenotype association analysis of meiotic stability in 10 autotetraploid Arabidopsis lyrata and A. lyrata/A. arenosa hybrid populations collected from the Wachau region and East Austrian Forealps. The aim was to determine the effect of eight meiosis genes under extreme selection upon adaptation to whole genome duplication. Individual plants were genotyped by high-throughput sequencing of the eight meiosis genes (ASY1, ASY3, PDS5b, PRD3, REC8, SMC3, ZYP1a/b) implicated in synaptonemal complex formation and phenotyped by assessing meiotic metaphase I chromosome configurations. Our results reveal that meiotic stability varied greatly (20-100%) between individual tetraploid plants and associated with segregation of a novel ASYNAPSIS3 (ASY3) allele derived from A. lyrata. The ASY3 allele that associates with meiotic stability possesses a putative in-frame tandem duplication (TD) of a serine-rich region upstream of the coiled-coil domain that appears to have arisen at sites of DNA microhomology. The frequency of multivalents observed in plants homozygous for the ASY3 TD haplotype was significantly lower than in plants heterozygous for ASY3 TD/ND (non-duplicated) haplotypes. The chiasma distribution was significantly altered in the stable plants compared to the unstable plants with a shift from proximal and interstitial to predominantly distal locations. The number of HEI10 foci at pachytene that mark class I crossovers was significantly reduced in a plant homozygous for ASY3 TD compared to a plant heterozygous for ASY3 ND/TD. Fifty-eight alleles of the 8 meiosis genes were identified from the 10 populations analysed, demonstrating dynamic population variability at these loci. Widespread chimerism between alleles originating from A. lyrata/A. arenosa and diploid/tetraploids indicates that this group of rapidly evolving genes may provide precise adaptive control over meiotic recombination in the tetraploids, the very process that gave rise to them.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Cromossômicas não Histona/genética , Meiose/genética , Alelos , Arabidopsis/crescimento & desenvolvimento , Pareamento Cromossômico/genética , Segregação de Cromossomos , Cromossomos de Plantas/genética , Proteínas de Ligação a DNA/genética , Diploide , Tetraploidia
15.
Plant Physiol ; 183(4): 1545-1558, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32527734

RESUMO

Crossovers (COs) ensure accurate chromosome segregation during meiosis while creating novel allelic combinations. Here, we show that allotetraploid (AABB) durum wheat (Triticum turgidum ssp. durum) utilizes two pathways of meiotic recombination. The class I pathway requires MSH4 and MSH5 (MutSγ) to maintain the obligate CO/chiasma and accounts for ∼85% of meiotic COs, whereas the residual ∼15% are consistent with the class II CO pathway. Class I and class II chiasmata are skewed toward the chromosome ends, but class II chiasmata are significantly more distal than class I chiasmata. Chiasma distribution does not reflect the abundance of double-strand breaks, detected by proxy as RAD51 foci at leptotene, but only ∼2.3% of these sites mature into chiasmata. MutSγ maintains the obligate chiasma despite a 5.4-kb deletion in MSH5B rendering it nonfunctional, which occurred early in the evolution of tetraploid wheat and was then domesticated into hexaploid (AABBDD) common wheat (Triticum aestivum), as well as an 8-kb deletion in MSH4D in hexaploid wheat, predicted to create a nonfunctional pseudogene. Stepwise loss of MSH5B and MSH4D following hybridization and whole-genome duplication may have occurred due to gene redundancy (as functional copies of MSH5A, MSH4A, and MSH4B are still present in the tetraploid and MSH5A, MSH5D, MSH4A, and MSH4B are present in the hexaploid) or as an adaptation to modulate recombination in allopolyploid wheat.


Assuntos
Triticum/genética , Segregação de Cromossomos/genética , Quebras de DNA de Cadeia Dupla , Meiose/genética , Meiose/fisiologia , Tetraploidia
16.
Plant Cell ; 32(4): 1218-1239, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32024691

RESUMO

Meiosis recombines genetic variation and influences eukaryote genome evolution. During meiosis, DNA double-strand breaks (DSBs) enter interhomolog repair to yield crossovers and noncrossovers. DSB repair occurs as replicated sister chromatids are connected to a polymerized axis. Cohesin rings containing the REC8 kleisin subunit bind sister chromatids and anchor chromosomes to the axis. Here, we report the genomic landscape of REC8 using chromatin immunoprecipitation sequencing (ChIP-seq) in Arabidopsis (Arabidopsis thaliana). REC8 associates with regions of high nucleosome occupancy in multiple chromatin states, including histone methylation at H3K4 (expressed genes), H3K27 (silent genes), and H3K9 (silent transposons). REC8 enrichment is associated with suppression of meiotic DSBs and crossovers at the chromosome and fine scales. As REC8 enrichment is greatest in transposon-dense heterochromatin, we repeated ChIP-seq in kyp suvh5 suvh6 H3K9me2 mutants. Surprisingly, REC8 enrichment is maintained in kyp suvh5 suvh6 heterochromatin and no defects in centromeric cohesion were observed. REC8 occupancy within genes anti-correlates with transcription and is reduced in COPIA transposons that reactivate expression in kyp suvh5 suvh6 Abnormal axis structures form in rec8 that recruit DSB-associated protein foci and undergo synapsis, which is followed by chromosome fragmentation. Therefore, REC8 occupancy correlates with multiple chromatin states and is required to organize meiotic chromosome architecture and interhomolog recombination.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Genoma de Planta , Recombinação Homóloga , Meiose , Arabidopsis/citologia , Cromossomos de Plantas/genética , Troca Genética , Metilação de DNA/genética , Elementos de DNA Transponíveis/genética , Heterocromatina/metabolismo , Mutação/genética , Nucleossomos/metabolismo , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Supressão Genética , Coesinas
17.
Methods Mol Biol ; 2061: 319-330, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31583669

RESUMO

Virus-induced gene silencing (VIGS) is a rapid and cost-effective reverse genetic technology that can be used to assess gene function in wheat. This chapter contains a detailed description of how to target wheat meiotic genes by VIGS. The timing of this technique is critical and has been optimized to silence meiotic genes at peak expression, evidenced by silencing of Triticum aestivum disrupted meiotic cDNA1 (TaDMC1). We also describe cytological techniques that have been adapted for the preparation and analysis of meiocytes in wheat, including fluorescent in situ hybridization (FISH) with directly labeled, synthetic oligonucleotide probes, and immunolocalization on spread material.


Assuntos
Análise Citogenética , Inativação Gênica , Interações Hospedeiro-Patógeno/genética , Meiose/genética , Triticum/genética , Cromossomos de Plantas , Análise Citogenética/métodos , Genes de Plantas , Vetores Genéticos/genética , Hibridização in Situ Fluorescente , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/virologia , Transformação Genética , Triticum/virologia
18.
Nat Commun ; 10(1): 5218, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31740675

RESUMO

Adaptive gene flow is a consequential phenomenon across all kingdoms. Although recognition is increasing, there is no study showing that bidirectional gene flow mediates adaptation at loci that manage core processes. We previously discovered concerted molecular changes among interacting members of the meiotic machinery controlling crossover number upon adaptation to whole-genome duplication (WGD) in Arabidopsis arenosa. Here we conduct a population genomic study to test the hypothesis that adaptation to WGD has been mediated by adaptive gene flow between A. arenosa and A. lyrata. We find that A. lyrata underwent WGD more recently than A. arenosa, suggesting that pre-adapted alleles have rescued nascent A. lyrata, but we also detect gene flow in the opposite direction at functionally interacting loci under the most extreme levels of selection. These data indicate that bidirectional gene flow allowed for survival after WGD, and that the merger of these species is greater than the sum of their parts.


Assuntos
Adaptação Fisiológica/genética , Arabidopsis/genética , Duplicação Gênica , Genoma de Planta , Genes de Plantas , Meiose/genética , Ploidias , Polimorfismo Genético , Especificidade da Espécie
19.
Plant Physiol ; 181(1): 221-235, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31266799

RESUMO

In most eukaryotes, a set of conserved proteins that are collectively termed ZMM proteins (named for molecular zipper 1 [ZIP1], ZIP2, ZIP3, and ZIP4, MutS homologue 4 [MSH4] and MSH5, meiotic recombination 3, and sporulation 16 [SPO16] in yeast [Saccharomyces cerevisiae]) are essential for the formation of the majority of meiotic crossovers (COs). Recent reports indicated that ZIP2 acts together with SPO16 and ZIP4 to control CO formation through recognizing and stabilizing early recombination intermediates in budding yeast. However, whether this mechanism is conserved in plants is not clear. Here, we characterized the functions of SHORTAGE OF CHIASMATA 1 (OsSHOC1; ZIP2 ortholog) and PARTING DANCERS (OsPTD; SPO16 ortholog) and their interactions with other ZMM proteins in rice (Oryza sativa). We demonstrated that disruption of OsSHOC1 caused a reduction of CO numbers to ∼83% of wild-type CO numbers, whereas synapsis and early meiotic recombination steps were not affected. Furthermore, OsSHOC1 interacts with OsPTD, which is responsible for the same set of CO formations as OsSHOC1. In addition, OsSHOC1 and OsPTD are required for the normal loading of other ZMM proteins, and conversely, the localizations of OsSHOC1 and OsPTD were also affected by the absence of OsZIP4 and human enhancer of invasion 10 in rice (OsHEI10). OsSHOC1 interacts with OsZIP4 and OsMSH5, and OsPTD interacts with OsHEI10. Furthermore, bimolecular fluorescence complementation and yeast-three hybrid assays demonstrated that OsSHOC1, OsPTD, OsHEI10, and OsZIP4 were able to form various combinations of heterotrimers. Moreover, statistical and genetic analysis indicated that OsSHOC1 and OsPTD are epistatic to OsHEI10 and OsZIP4 in meiotic CO formation. Taken together, we propose that OsSHOC1, OsPTD, OsHEI10, and OsZIP4 form multiple protein complexes that have conserved functions in promoting class I CO formation.


Assuntos
Pareamento Cromossômico/genética , Troca Genética/genética , Complexos Multiproteicos/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Complexos Multiproteicos/genética , Oryza/citologia , Oryza/metabolismo , Proteínas de Plantas/genética , Alinhamento de Sequência , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/metabolismo
20.
BMC Plant Biol ; 19(1): 178, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31046681

RESUMO

Following publication of the original article [1], a reader spotted an incorrect citation of the reference 14 [2] in the 'Background'. The male meiocyte isolation work described in this article [2] was carried out in rice and not in Brassica as originally stated in the 'Background' [1]. Thus, the following amendment to the Background section should be noted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...