Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(11): e0242250, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33253217

RESUMO

RATIONALE: The beta-O-linkage of N-acetylglucosamine (i.e., O-GlcNAc) to proteins is a pro-adaptive response to cellular insults. To this end, increased protein O-GlcNAcylation improves short-term survival of cardiomyocytes subjected to acute injury. This observation has been repeated by multiple groups and in multiple models; however, whether increased protein O-GlcNAcylation plays a beneficial role in more chronic settings remains an open question. OBJECTIVE: Here, we queried whether increasing levels of cardiac protein O-GlcNAcylation would be beneficial during infarct-induced heart failure. METHODS AND RESULTS: To achieve increased protein O-GlcNAcylation, we targeted Oga, the gene responsible for removing O-GlcNAc from proteins. Here, we generated mice with cardiomyocyte-restricted, tamoxifen-inducible haploinsufficient Oga gene. In the absence of infarction, we observed a slight reduction in ejection fraction in Oga deficient mice. Overall, Oga reduction had no major impact on ventricular function. In additional cohorts, mice of both sexes and both genotypes were subjected to infarct-induced heart failure and followed for up to four weeks, during which time cardiac function was assessed via echocardiography. Contrary to our prediction, the Oga deficient mice exhibited exacerbated-not improved-cardiac function at one week following infarction. When the observation was extended to 4 wk post-MI, this acute exacerbation was lost. CONCLUSIONS: The present findings, coupled with our previous work, suggest that altering the ability of cardiomyocytes to either add or remove O-GlcNAc modifications to proteins exacerbates early infarct-induced heart failure. We speculate that more nuanced approaches to regulating O-GlcNAcylation are needed to understand its role-and, in particular, the possibility of cycling, in the pathophysiology of the failing heart.


Assuntos
Infarto do Miocárdio/patologia , Miocárdio/enzimologia , N-Acetilglucosaminiltransferases/genética , Disfunção Ventricular/etiologia , Animais , Ecocardiografia , Feminino , Glicosilação , Haploinsuficiência , Coração/fisiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Infarto do Miocárdio/complicações , Miocárdio/metabolismo , Miocárdio/patologia , N-Acetilglucosaminiltransferases/deficiência , N-Acetilglucosaminiltransferases/metabolismo , Tamoxifeno/farmacologia , Regulação para Cima , Função Ventricular/efeitos dos fármacos
2.
Basic Res Cardiol ; 114(4): 28, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31152247

RESUMO

Several post-translational modifications figure prominently in ventricular remodeling. The beta-O-linkage of N-acetylglucosamine (O-GlcNAc) to proteins has emerged as an important signal in the cardiovascular system. Although there are limited insights about the regulation of the biosynthetic pathway that gives rise to the O-GlcNAc post-translational modification, much remains to be elucidated regarding the enzymes, such as O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which regulate the presence/absence of O-GlcNAcylation. Recently, we showed that the transcription factor, E2F1, could negatively regulate OGT and OGA expression in vitro. The present study sought to determine whether E2f1 deletion would improve post-infarct ventricular function by de-repressing expression of OGT and OGA. Male and female mice were subjected to non-reperfused myocardial infarction (MI) and followed for 1 or 4 week. MI significantly increased E2F1 expression. Deletion of E2f1 alone was not sufficient to alter OGT or OGA expression in a naïve setting. Cardiac dysfunction was significantly attenuated at 1-week post-MI in E2f1-ablated mice. During chronic heart failure, E2f1 deletion also attenuated cardiac dysfunction. Despite the improvement in function, OGT and OGA expression was not normalized and protein O-GlcNAcyltion was not changed at 1-week post-MI. OGA expression was significantly upregulated at 4-week post-MI but overall protein O-GlcNAcylation was not changed. As an alternative explanation, we also performed guided transcriptional profiling of predicted targets of E2F1, which indicated potential differences in cardiac metabolism, angiogenesis, and apoptosis. E2f1 ablation increased heart size and preserved remote zone capillary density at 1-week post-MI. During chronic heart failure, cardiomyocytes in the remote zone of E2f1-deleted hearts were larger than wildtype. These data indicate that, overall, E2f1 exerts a deleterious effect on ventricular remodeling. Thus, E2f1 deletion improves ventricular remodeling with limited impact on enzymes regulating O-GlcNAcylation.


Assuntos
Fator de Transcrição E2F1/deficiência , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Capilares/metabolismo , Capilares/patologia , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Modelos Animais de Doenças , Fator de Transcrição E2F1/genética , Feminino , Deleção de Genes , Glicosilação , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , N-Acetilglucosaminiltransferases/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...