Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proteomes ; 2(4): 501-526, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-28250393

RESUMO

Many clinically available anticancer compounds are designed to target DNA. This commonality of action often yields overlapping cellular response mechanisms and can thus detract from drug efficacy. New compounds are required to overcome resistance mechanisms that effectively neutralise compounds like cisplatin and those with similar chemical structures. Studies have shown that 56MESS is a novel compound which, unlike cisplatin, does not covalently bind to DNA, but is more toxic to many cell lines and active against cisplatin-resistant cells. Furthermore, a transcriptional study of 56MESS in yeast has implicated iron and copper metabolism as well as the general yeast stress response following challenge with 56MESS. Beyond this, the cytotoxicity of 56MESS remains largely uncharacterised. Here, yeast was used as a model system to facilitate a systems-level comparison between 56MESS and cisplatin. Preliminary experiments indicated that higher concentrations than seen in similar studies be used. Although a DNA interaction with 56MESS had been theorized, this work indicated that an effect on protein synthesis/ degradation was also implicated in the mechanism(s) of action of this novel anticancer compound. In contrast to cisplatin, the different mechanisms of action that are indicated for 56MESS suggest that this compound could overcome cisplatin resistance either as a stand-alone treatment or a synergistic component of therapeutics.

2.
BMC Genomics ; 14: 445, 2013 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-23826764

RESUMO

BACKGROUND: Pattern-oriented chemical profiling is increasingly being used to characterize the phytochemical composition of herbal medicines for quality control purposes. Ideally, a fingerprint of the biological effects should complement the chemical fingerprint. For ethical and practical reasons it is not possible to test each herbal extract in laboratory animals or humans. What is needed is a test system consisting of an organism with relevant biology and complexity that can serve as a surrogate in vitro system. The purpose of this study was to test the hypothesis that the Saccharomyces cerevisiae transcriptome might be used as an indicator of phytochemical variation of closely-related yet distinctly different extracts prepared from a single species of a phytogeographically widely distributed medicinal plant. We combined phytochemical profiling using chromatographic methods (HPTLC, HPLC-PDA-MS/MS) and gene expression studies using Affymetrix Yeast 2.0 gene chip with principal component analysis and k-nearest neighbor clustering analysis to test this hypothesis using extracts prepared from the phytogeographically widely distributed medicinal plant Equisetum arvense as a test case. RESULTS: We found that the Equisetum arvense extracts exhibited qualitative and quantitative differences in their phytochemical composition grouped along their phytogeographical origin. Exposure of yeast to the extracts led to changes in gene expression that reflected both the similarities and differences in the phytochemical composition of the extracts. The Equisetum arvense extracts elicited changes in the expression of genes involved in mRNA translation, drug transport, metabolism of energy reserves, phospholipid metabolism, and the cellular stress response. CONCLUSIONS: Our data show that functional genomics in S. cerevisiae may be developed as a sensitive bioassay for the scientific investigation of the interplay between phytochemical composition and transcriptional effects of complex mixtures of chemical compounds. S. cerevisiae transcriptomics may also be developed for testing of mixtures of conventional drugs ("polypills") to discover novel antagonistic or synergistic effects of those drug combinations.


Assuntos
Equisetum/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Transcriptoma/efeitos dos fármacos , América , China , Bases de Dados Genéticas , Europa (Continente) , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Índia , Análise de Sequência com Séries de Oligonucleotídeos
3.
Mol Biol Cell ; 24(18): 2876-84, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23864711

RESUMO

Reactive oxygen species (ROS) consist of potentially toxic, partly reduced oxygen species and free radicals. After H(2)O(2) treatment, yeast cells significantly increase superoxide radical production. Respiratory chain complex III and possibly cytochrome b function are essential for this increase. Disruption of complex III renders cells sensitive to H(2)O(2) but not to the superoxide radical generator menadione. Of interest, the same H(2)O(2)-sensitive mutant strains have the lowest superoxide radical levels, and strains with the highest resistance to H(2)O(2) have the highest levels of superoxide radicals. Consistent with this correlation, overexpression of superoxide dismutase increases sensitivity to H(2)O(2), and this phenotype is partially rescued by addition of small concentrations of menadione. Small increases in levels of mitochondrially produced superoxide radicals have a protective effect during H(2)O(2)-induced stress, and in response to H(2)O(2), the wild-type strain increases superoxide radical production to activate this defense mechanism. This provides a direct link between complex III as the main source of ROS and its role in defense against ROS. High levels of the superoxide radical are still toxic. These opposing, concentration-dependent roles of the superoxide radical comprise a form of hormesis and show one ROS having a hormetic effect on the toxicity of another.


Assuntos
Citoproteção/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Saccharomyces cerevisiae/citologia , Estresse Fisiológico/efeitos dos fármacos , Superóxidos/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Citocromos b/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mutação/genética , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
4.
J Chem Biol ; 5(2): 51-61, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23226166

RESUMO

UNLABELLED: Platinum-based DNA metallointercalators are structurally different from the covalent DNA binders such as cisplatin and its derivatives but have potent in vitro activity in cancer cell lines. However, limited understanding of their molecular mechanisms of cytotoxic action greatly hinders their further development as anticancer agents. In this study, a lead platinum-based metallointercalator, [(5,6-dimethyl-1,10-phenanthroline) (1S,2S-diaminocyclohexane)platinum(II)](2+) (56MESS) was found to be 163-fold more active than cisplatin in a cisplatin-resistant cancer cell line. By using transcriptomics in a eukaryotic model organism, yeast Saccharomyces cerevisiae, we identified 93 genes that changed their expressions significantly upon exposure of 56MESS in comparison to untreated controls (p ≤ 0.05). Bioinformatic analysis of these genes demonstrated that iron and copper metabolism, sulfur-containing amino acids and stress response were involved in the cytotoxicity of 56MESS. Follow-up experiments showed that the iron and copper concentrations were much lower in 56MESS-treated cells compared to controls as measured by inductively coupled plasma optical emission spectrometry. Deletion mutants of the key genes in the iron and copper metabolism pathway and glutathione synthesis were sensitive to 56MESS. Taken together, the study demonstrated that the cytotoxic action of 56MESS is mediated by its ability to disrupt iron and copper metabolism, suppress the biosynthesis of sulfur-containing amino acids and attenuate cellular defence capacity. As these mechanisms are in clear contrast to the DNA binding mechanism for cisplatin and its derivative, 56MESS may be able to overcome cisplatin-resistant cancers. These findings have provided basis to further develop the platinum-based metallointercalators as anticancer agents. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12154-011-0070-x) contains supplementary material, which is available to authorized users.

5.
Metallomics ; 4(9): 950-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22814756

RESUMO

Platinum(II) metallointercalators of the type [Pt(I(L))(A(L))](2+), such as [(5,6-dimethyl-1,10-phenanthroline)(1S,2S-diaminocyclohexane)platinum(II)](2+) (56MESS), are structurally different from cisplatin. This study, using a comparative transcriptomics approach, uncovered genomic expression patterns and molecular pathways that distinctively differentiated 56MESS and cisplatin in the eukaryote model organism Saccharomyces cerevisiae (yeast). Down-regulation of sulfur assimilation, cellular respiration, and energy metabolism were characteristics of 56MESS while up-regulation of these pathways and genes in cell cycle was the action of cisplatin. Furthermore, de novo purine biosynthesis and glycine metabolism were induced by 56MESS but suppressed by cisplatin. Different effects on intracellular concentrations of iron and copper were evident, with 56MESS more profoundly inducing genes controlling uptake of these ions than cisplatin. Finally, apart from 56MESS, additional metallointercalators including 56MEEN, 5MERR and 5MESS were subsequently identified to be more active in a cisplatin-resistant mouse leukaemia L1210cisR cell line than cisplatin, which provides multiple lead compounds for future drug development.


Assuntos
Cisplatino/farmacologia , Substâncias Intercalantes/farmacologia , Platina/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/química , Análise por Conglomerados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes Neoplásicos/genética , Substâncias Intercalantes/química , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Camundongos , Compostos Organoplatínicos/farmacologia , Platina/química , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Espectrofotometria Atômica , Regulação para Cima/genética
6.
Biometals ; 25(3): 553-61, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22403011

RESUMO

Following our previous finding that the sulfhydryl-oxidising chemical diamide induced a marked elevation of cellular Al(3+) (Wu et al., Int J Mol Sci, 12:8119-8132, 2011), a further investigation into the underlying molecular mechanism was carried out, using the eukaryotic model organism Saccharomyces cerevisiae. The effects of non-toxic dose of diamide (0.8 mM) and a mild dose of aluminium sulphate (Al(3+)) (0.4 mM) were determined prior to the screening of gene deletion mutants. A total of 81 deletion mutants were selected for this study according to the available screening data against Al(3+) only (Kakimoto et al., BioMetals, 18: 467-474, 2005) and diamide only (Thorpe et al., Proc Natl Acad Sci USA, 101: 6564-6569, 2004). On the basis of our screening data and the cluster analysis, a cluster containing the gene deletions (rpe1∆, sec72∆, pdr5∆ and ric1∆) was found to be specifically sensitive to the mixture of diamide and Al(3+). However gnp1∆, mch5∆ and ccc1∆ mutants were resistant. Dithiothreitol (DTT) and ascorbate markedly reversed the diamide-induced Al(3+) toxicity. Inductively-coupled plasma optical emission spectrometry demonstrated that DTT reduced the intracellular Al(3+) content in diamide/Al(3+)-treated yeast cells six-fold compared to the non-DTT controls. These data together revealed that the pleiotropic drug resistance transporter (Pdr5p) and vacuolar/vesicular transport-related proteins (Ric1p and Sec72p) are the targets of diamide. A dysfunctional membrane-bound Pdr5p terminates the detoxification pathway for Al(3+) at the final step, leading to intracellular Al(3+) accumulation and hence toxicity. As Al(3+) toxicity has been a problem in agriculture and human health, this study has provided a significant step forward in understanding Al(3+) toxicity.


Assuntos
Alumínio/farmacologia , Dissulfetos/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Diamida/farmacologia , Ditiotreitol/farmacologia , Saccharomyces cerevisiae/metabolismo
7.
J Chem Biol ; 5(4): 143-50, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23997833

RESUMO

Here, we report an improved method to analyze antioxidant activity using the europium tetracycline assay developed by Duerkop and Wolfbeis (J Fluor 15(5):755-761, 2005). The europium tetracycline hydrogen peroxide reduction assay (EHRA) accurately measures antioxidant activity based on hydrogen peroxide scavenging. Several known antioxidant compounds were assessed with the EHRA and a stoichiometric relationship between the number of oxidant molecules trapped per molecule of antioxidant was identified. Various extracts of hops were also tested to validate this method for use with natural extracts; water extraction yielded the highest level of antioxidant activity. Hop leaves were shown to be a better source of antioxidants relative to the traditional hop cones. The data also indicate that the EHRA may serve to breach the hydrophilic/lipophilic gap in antioxidant screening as the europium tetracycline probe is effective in many solvents. The EHRA thus provides a robust and inexpensive measure of antioxidant activity.

8.
Int J Mol Sci ; 12(11): 8119-32, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22174654

RESUMO

Elemental uptake and export of the cell are tightly regulated thereby maintaining the ionomic homeostasis. This equilibrium can be disrupted upon exposure to exogenous reactive oxygen species (ROS), leading to reduction or elevation of the intracellular metal ions. In this study, the ionomic composition in the eukaryotic model organism Saccharomyces cerevisiae was profiled using the inductively-coupled plasma optical emission spectrometer (ICP-OES) following the treatment with individual ROS, including hydrogen peroxide, cumen hydroperoxide, linoleic acid hydroperoxide (LAH), the superoxide-generating agent menadione, the thiol-oxidising agent diamide [diazine-dicarboxylic acid-bis(dimethylamide)], dimedone and peroxynitrite. The findings demonstrated that different ROS resulted in distinct changes in cellular metal ions. Aluminium (Al(3+)) level rose up to 50-fold after the diamide treatment. Cellular potassium (K(+)) in LAH-treated cells was 26-fold less compared to the non-treated controls. The diamide-induced Al(3+) accumulation was further validated by the enhanced Al(3+) uptake along the time course and diamide doses. Pre-incubation of yeast with individual elements including iron, copper, manganese and magnesium failed to block diamide-induced Al(3+) uptake, suggesting Al(3+)-specific transporters could be involved in Al(3+) uptake. Furthermore, LAH-induced potassium depletion was validated by a rescue experiment in which addition of potassium increased yeast growth in LAH-containing media by 26% compared to LAH alone. Taken together, the data, for the first time, demonstrated the linkage between ionomic profiles and individual oxidative conditions.


Assuntos
Alumínio/metabolismo , Íons/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Derivados de Benzeno/farmacologia , Cobre/metabolismo , Cicloexanonas/farmacologia , Diamida/farmacologia , Peróxido de Hidrogênio/farmacologia , Ácidos Linoleicos/farmacologia , Peróxidos Lipídicos/farmacologia , Magnésio/metabolismo , Manganês/metabolismo , Modelos Moleculares , Oxidantes/farmacologia , Ácido Peroxinitroso/farmacologia , Potássio/metabolismo , Vitamina K 3/farmacologia
9.
AMB Express ; 1: 36, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22044590

RESUMO

In winemaking, nutrient supplementation is a common practice for optimising fermentation and producing quality wine. Nutritionally suboptimal grape juices are often enriched with nutrients in order to manipulate the production of yeast aroma compounds. Nutrients are also added to active dry yeast (ADY) rehydration media to enhance subsequent fermentation performance. In this study we demonstrate that nutrient supplementation at rehydration also has a significant effect on the formation of volatile sulfur compounds during wine fermentations. The concentration of the 'fruity' aroma compounds, the polyfunctional thiols 3-mercaptohexan-1-ol (3MH) and 3-mercaptohexyl acetate (3MHA), was increased while the concentration of the 'rotten egg' aroma compound, hydrogen sulfide (H2S), was decreased. Nutrient supplementation of the rehydration media also changed the kinetics of H2S production during fermentation by advancing onset of H2S production. Microarray analysis revealed that this was not due to expression changes within the sulfate assimilation pathway, which is known to be a major contributor to H2S production. To gain insight into possible mechanisms responsible for this effect, a component of the rehydration nutrient mix, the tri-peptide glutathione (GSH) was added at rehydration and studied for its subsequent effects on H2S formation. GSH was found to be taken up during rehydration and to act as a source for H2S during the following fermentation. These findings represent a potential approach for managing sulfur aroma production through the use of rehydration nutrients.

10.
Int J Mol Sci ; 12(9): 6089-103, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22016646

RESUMO

This study was carried out with fresh Australian lager beer which was sampled directly off the production line, the same samples aged for 12 weeks at 30 °C, and the vintage beer which was kept at 20 °C for 5 years. Characteristic Australian lager flavour was maintained in the fresh and vintage beers but was lost in the aged beer. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and free thiol group labelling analyses of beer proteins found that this flavour stability correlated with the presence of an unknown 10 kilodaltons (kDa) protein with a higher level of free thiols. The protein was purified by size-exclusion chromatography, then peptide sequencing and database matching identified it as the barley lipid transfer protein (LTP1). Further characterisation using diphenylpicrylhydrazyl (DPPH) free radical scavenging and a Saccharomyces cerevisiae-based antioxidant screening assay demonstrated that the LTP1 protein was active in DPPH reduction and antioxidant activity. The absence of free thiol in the aged beer indicates that the thiol functional groups within the LTP1 protein were saturated and suggests that it is important in the flavour stability of beer by maintaining reduction capacity during the ageing process.


Assuntos
Antioxidantes/metabolismo , Cerveja/análise , Armazenamento de Alimentos , Proteínas de Plantas/metabolismo , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Austrália , Compostos de Bifenilo/antagonistas & inibidores , Compostos de Bifenilo/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/isolamento & purificação , Proteínas de Transporte/metabolismo , Cromatografia em Gel , Eletroforese em Gel de Poliacrilamida , Sequestradores de Radicais Livres/isolamento & purificação , Sequestradores de Radicais Livres/metabolismo , Sequestradores de Radicais Livres/farmacologia , Radicais Livres/antagonistas & inibidores , Radicais Livres/metabolismo , Hordeum/metabolismo , Humanos , Picratos/antagonistas & inibidores , Picratos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Análise de Sequência de Proteína , Compostos de Sulfidrila/metabolismo , Temperatura , Fatores de Tempo
11.
FEMS Yeast Res ; 11(4): 379-87, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21375688

RESUMO

This report describes a biological screening system to measure the antioxidant capacity of compounds using the oxidant-induced growth arrest response of Saccharomyces cerevisiae. Alternative methods using the nonphysiological free radical compounds such as diphenylpicrylhydrazyl and azinobis ethylbenzothiaziline-6-sulphonate (ABTS) only provide an indication of the ability of a compound to scavenge oxidants. In contrast, this yeast-based method can also measure the ability of a compound to induce cellular resistance to the damaging effects of oxidants. The screening assay was established against a panel of six physiologically relevant oxidants ranging from reactive oxygen species (hydrogen peroxide, cumene peroxide, linoleic acid hydroperoxide), to a superoxide-generating agent (menadione), reactive nitrogen species (peroxynitrite) and a thiol-oxidizing agent (diamide). The antioxidants ascorbate and gallic acid displayed scavenging activity and induced the resistance of cells against a broad range of oxidants using this assay. Lipoic acid, which showed no scavenging activity and thus would not be detected as an antioxidant using a nonphysiological screen was, however, identified in this assay as providing resistance to cells against a range of oxidants. This assay is high throughput, in the format of a 96-well microtitre plate, and will greatly facilitate the search for effective antioxidants.


Assuntos
Antioxidantes/análise , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Antioxidantes/farmacologia , Diamida/farmacologia , Espécies Reativas de Nitrogênio/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Saccharomyces cerevisiae/metabolismo , Superóxidos/farmacologia , Vitamina K 3/farmacologia
12.
FEMS Yeast Res ; 9(8): 1187-95, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19702872

RESUMO

During the production of wine and beer, the yeast Saccharomyces cerevisiae can encounter an environment that is deficient in zinc, resulting in a 'sluggish' or a 'stuck' ferment. It has been shown that the Zap1p-transcription factor induces the expression of a regulon in response to zinc deficiency; however, it was evident that a separate regulon was also activated during zinc deficiency in a Zap1p-independent manner. This study discovered the Msn2p and Msn4p (Msn2/4p) transcriptional activator proteins to be an additional control mechanism inducing the stress response during zinc deficiency. Promoter sequence analysis identified the stress-response element (STRE) motif, recognized by Msn2/4p, and was significantly enriched in the promoters of genes induced by zinc deficiency. An investigation using genome-wide analyses revealed a distinct regulon consisting of STRE-containing genes whose zinc-responsive expression was abolished in an msn2 msn4 double mutant. An STRE-driven lacZ reporter construct confirmed that expression of the genes within this regulon was perturbed by the deletion of MSN2 and MSN4 and also implicated Hog1p as a contributing factor. This research provides a better understanding of the molecular mechanisms involved in the yeast response to zinc deficiency during fermentation.


Assuntos
Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/fisiologia , Estresse Fisiológico , Zinco/metabolismo , Sítios de Ligação/genética , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Deleção de Genes , Genes Reporter , Regiões Promotoras Genéticas , Regulon , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
13.
J Biol Chem ; 284(17): 11205-15, 2009 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-19224916

RESUMO

The transcriptional activator Gcn4p is considered the master regulator of amino acid metabolism in Saccharomyces cerevisiae and is required for the transcriptional response to amino acid starvation. Here it is shown that Gcn4p plays a previously undescribed role in regulating adaptation to anaerobic growth. A gcn4 mutant exhibited a highly extended lag phase after a shift to anaerobiosis that was the result of l-serine depletion. In addition, the one-carbon metabolism and purine biosynthesis transcriptional regulator Bas1p were strictly required for anaerobic growth on minimal medium, and this was similarly due to l-serine limitation in bas1 mutants. The induction of one-carbon metabolism during anaerobiosis is needed to increase the supply of l-serine from the glycine and threonine pathways. Using a number of experimental approaches, we demonstrate that these transcription regulators play vital roles in regulating l-serine biosynthesis in the face of increased demand during adaptation to anaerobiosis. This increased l-serine requirement is most likely due to anaerobic remodeling of the cell wall, involving de novo synthesis of a large number of very serine-rich mannoproteins and an increase in the total serine content of the cell wall. During anaerobic starvation for l-serine, this essential amino acid is preferentially directed to the cell wall, indicating the existence of a regulatory mechanism to balance competing cellular demands.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Transativadores/fisiologia , Fatores de Transcrição/fisiologia , Transcrição Gênica , Fatores de Transcrição de Zíper de Leucina Básica , Proliferação de Células , Parede Celular , Genes Reporter , Genótipo , Glicina/química , Modelos Biológicos , Mutação , Saccharomyces cerevisiae/metabolismo , Serina/química , Frações Subcelulares , Treonina/química
14.
FEMS Yeast Res ; 8(8): 1214-22, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18795957

RESUMO

The molecular mechanisms involved in the ability of cells to adapt and respond to differing oxygen tensions are of great interest to the pharmaceutical, medical and fermentation industries. The transcriptional profiles reported in previous studies of cells grown under anaerobic, aerobic and dynamic growth conditions have shown significantly altered responses including induction of genes regulated by the oxidative stress transcription factor Yap1p when oxygen was present. The present study investigated the phenotypic changes that occur in cells when shifted from anaerobic to aerobic growth conditions and it was found through mutant analyses that the elevated activity of Yap1p during the shift was mediated by the phospholipid hydroperoxide-sensing protein encoded by GPX3. Cell viability and growth rate were unaffected even though anaerobically grown cells were found to be hypersensitive to low doses of the oxidative stress-inducing compound hydrogen peroxide (H(2)O(2)). Adaptation to H(2)O(2) treatment was demonstrated to occur when anaerobically grown wild-type cells were aerated for a short time that was reliant on the Yap1p and Skn7p transcription factors.


Assuntos
Adaptação Fisiológica , Proteínas de Ligação a DNA/metabolismo , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Anaerobiose , Regulação Fúngica da Expressão Gênica , Mutação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
Free Radic Biol Med ; 44(6): 1131-45, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18206664

RESUMO

A total of 286 H2O2-sensitive Saccharomyces cerevisiae deletion mutants were screened to identify genes involved in cellular adaptation to H2O2 stress. YAP1, SKN7, GAL11, RPE1, TKL1, IDP1, SLA1, and PET8 were important for adaptation to H2O2. The mutants were divisible into two groups based on their responses to a brief acute dose of H2O2 and to chronic exposure to H2O2. Transcription factors Yap1p, Skn7p, and Gal11p were important for both acute and chronic responses to H2O2. Yap1p and Skn7p were acting in concert for adaptation, which indicates that upregulation of antioxidant functions rather than generation of NADPH or glutathione is important for adaptation. Deletion of GPX3 and YBP1 involved in sensing H2O2 and activating Yap1p affected adaptation but to a lesser extent than YAP1 deletion. NADPH generation was also required for adaptation. RPE1, TKL1, or IDP1 deletants affected in NADPH production were chronically sensitive to H2O2 but resistant to an acute dose, and other mutants affected in NADPH generation tested were similarly affected in adaptation. These mutants overproduced reduced glutathione (GSH) but maintained normal cellular redox homeostasis. This overproduction of GSH was not regulated at transcription of the gene encoding gamma-glutamylcysteine synthetase.


Assuntos
Adaptação Fisiológica/genética , Proteínas de Ligação a DNA/metabolismo , Peróxido de Hidrogênio/toxicidade , NADP/metabolismo , Oxidantes/toxicidade , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição/metabolismo , Expressão Gênica , Regulação Fúngica da Expressão Gênica , Estresse Oxidativo/fisiologia
16.
FEMS Yeast Res ; 8(3): 386-99, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18205808

RESUMO

Cells treated with low doses of linoleic acid hydroperoxide (LoaOOH) exhibit a cell-cycle delay that may provide a mechanism to overcome oxidative stress. Strains sensitive to LoaOOH from the genome-wide deletion collection were screened to identify deletants in which the cell-cycle delay phenotype was reduced. Forty-seven deletants were identified that were unable to mount the normal delay response, implicating the product of the deleted gene in the oxidant-mediated cell-cycle delay of the wild-type. Of these genes, SWI6 was of particular interest due to its role in cell-cycle progression through Start. The swi6 deletant strain was delayed on entry into the cell cycle in the absence of an oxidant, and oxidant addition caused no further delay. Transforming the swi6 deletant with SWI6 on a plasmid restored the G1 arrest in response to LoaOOH, indicating that Swi6p is involved in oxidant sensing leading to cell division delay. Micro-array studies identified genes whose expression in response to LoaOOH depended on SWI6. The screening identified 77 genes that were upregulated in the wild-type strain and concurrently downregulated in the swi6 deletant treated with LoaOOH. These data show that functions such as heat shock response, and glucose transport are involved in the response.


Assuntos
Ciclo Celular/efeitos dos fármacos , Ácidos Linoleicos/farmacologia , Peróxidos Lipídicos/farmacologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/citologia , Fatores de Transcrição/fisiologia , Glicólise , Estresse Oxidativo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Transcrição Gênica
17.
Dalton Trans ; (43): 5055-64, 2007 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-17992290

RESUMO

Platinum(II)-based DNA intercalators where the intercalating ligand is 1,10-phenanthroline or a phenanthroline derivative and where the ancillary ligand is either achiral (e.g. ethylenediamine) or chiral (e.g. diaminocyclohexane) show a range of cytotoxicities with a defined structure-activity relationship. The most cytotoxic are those that contain methylated-phenanthroline ligands and 1S,2S-diaminocyclohexane (S,S-dach) as the ancillary ligand. We have developed a new purification method using Sep-Pak C-18 reverse phase columns, which means these metal complexes can be made faster and cheaper compared to published methods. Platinum(II)-based complexes containing imidazole, pyrrole and beta-alanine subunits, that are capable of recognising specific DNA base-pair sequences have also been synthesised. These include linear or hairpin polyamide ligands that can recognise DNA sequences up to seven base-pairs in length and contain single platinum centres capable of forming monofunctional adducts with DNA. We have now synthesised and characterised, by (1)H and (195)Pt NMR, ESI-MS and elemental analysis, the first dinuclear platinum(II) DNA sequence selective agent. Finally, using (1)H NMR we have examined the encapsulation of our platinum(II)-based DNA intercalators by cucurbit[6]uril (CB[6]). Encapsulation by CB[6] was found to not significantly change the cytotoxicity of five platinum(II)-based DNA intercalators, indicating it may have utility as a molecular carrier for improved drug delivery.


Assuntos
Antineoplásicos/química , Compostos de Platina/química , Adutos de DNA/química , Portadores de Fármacos , Substâncias Intercalantes/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray
18.
J Biol Inorg Chem ; 12(7): 969-79, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17653578

RESUMO

The partial encapsulation of platinum(II)-based DNA intercalators of the type [Pt(5-Cl-phen)(ancillary ligand)](2+), where 5-Cl-phen is 5-chloro-1,10-phenanthroline and the ancillary ligand is ethylenediamine, (1S,2S)-diaminocyclohexane (S,S-dach) or (1R,2R)-diaminocyclohexane, within cucurbit[n]uril (CB[n], where n is 6, 7 or 8) has been examined by (1)H and (195)Pt NMR and mass spectrometry. For CB[7], the molecule encapsulates over the ancillary ligand of all metal complexes, whether this is ethylenediamine or diaminocyclohexane. For CB[8], encapsulation occurs over the sides of the 5-Cl-phen ligand at low [Pt(5-Cl-phen)(S,S-dach)](2+) (5CLSS) to CB[8] ratios (i.e. 0.25:1) but over the ancillary ligand at higher ratios (i.e. 2:1). For CB[6] binding, 5CLSS exhibits both portal and cavity binding, with the ancillary ligand displaying chemical shifts consistent with fast exchange kinetics on the NMR timescale for portal binding and slow exchange kinetics for cavity binding. Binding constants could not be determined using UV-vis, circular dichroism or fluorescence spectrophotometry, but a binding constant for binding of 5CLSS to CB[6] of approximately 10(5) M(-1) was determined using (1)H NMR. Finally, the effect of CB[n] encapsulation on the cytotoxicity of the metal complexes was examined using L1210 murine leukaemia cells in vitro growth inhibition assays. The cytotoxicity is highly dependent on both the metal complex and the CB[n] size, and whilst CB[7] and CB[8] generally decreased cytotoxicity, it was found that CB[6] increased the cyotoxicity of 5CLSS up to 2.5-fold.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/química , DNA/química , Imidazóis/química , Substâncias Intercalantes/química , Leucemia/tratamento farmacológico , Platina/química , Animais , Cápsulas/química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Camundongos , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray
19.
J Natl Cancer Inst ; 97(20): 1539-47, 2005 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-16234568

RESUMO

BACKGROUND: The synthetic tripeptide arsenical 4-(N-(S-glutathionylacetyl)amino) phenylarsenoxide (GSAO) is an angiogenesis inhibitor that targets the mitochondria of actively dividing but not quiescent endothelial cells, arresting their proliferation and causing apoptosis. Normal endothelial cells are much more sensitive to GSAO than tumor cells. To elucidate the mechanism of tumor cell resistance, we identified yeast genes that are necessary for resistance to GSAO. METHODS: We screened a genome-wide set of 4546 Saccharomyces cerevisiae deletion strains to identify GSAO-sensitive strains. We then examined GSAO accumulation in and proliferation activity of endothelial cells (BAECs) and tumor cells treated with GSAO and modulators of pathways and proteins identified in the yeast screen. We also examined GSAO effects on proliferation of mammalian cells transfected with transporter protein constructs. RESULTS: Eighty-eight deletion strains were sensitive to GSAO. The most sensitive strains had deletions of genes whose products are involved in vacuolar function (corresponding to drug transport in mammalian cells) and glutathione synthesis. BAECs were more sensitive to GSAO than tumor cells, and cell sensitivity to GSAO was approximately proportional to cellular glutathione levels. Treatment of BAECs and tumor cells with MK-571, an inhibitor of multidrug resistance-associated protein (MRP), or with buthionine sulfoximine, an inhibitor of glutathione synthesis, increased their sensitivity to GSAO. Mammalian cells transfected with MRP1 or MRP2 were resistant to GSAO, whereas cells transfected with MRP3, MRP4, MRP5, P-glypoprotein, or breast cancer resistance protein were not. CONCLUSIONS: Differences in MRP activity and cellular glutathione levels contribute to the selectivity of GSAO for endothelial versus tumor cells. MRP1 and/or MRP2 may transport GSAO from resistant cells, with glutathione acting as a cotransporter. Genetic screening in yeast is a powerful tool for understanding drug action in mammalian cells.


Assuntos
Inibidores da Angiogênese/farmacologia , Arsenicais/farmacologia , Endotélio Vascular/efeitos dos fármacos , Deleção de Genes , Glutationa/análogos & derivados , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Endotélio Vascular/citologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genoma Fúngico , Glutationa/farmacologia , Immunoblotting , Proteínas Mitocondriais/genética , Proteínas Ribossômicas/genética , Transfecção , Células Tumorais Cultivadas/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
20.
Free Radic Biol Med ; 37(1): 23-35, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15183192

RESUMO

Free radicals can initiate the oxidation of polyunsaturated fatty acids in cells through the process of lipid peroxidation. The genome-wide transcriptional changes in Saccharomyces cerevisiae after treatment with the toxic lipid peroxidation product linoleic acid hydroperoxide (LoaOOH) were identified. High-dose treatment led to a switch in transcription from biosynthetic to protective functions. This response encompassed a set of genes stimulated predominantly by LoaOOH, and not by other oxidants or heat shock, which contained components of the pleiotropic drug resistance system. The dose dependence of the transcriptional response revealed that large and widespread changes occur only in response to higher doses. Pretreatment of cells with sublethal doses of LoaOOH induces resistance to an otherwise lethal dose through the process of adaptation. Adaptive doses elicited a more subtle transcriptional response affecting metabolic functions, including an increase in the capacity for detoxification and downregulation of the rate of protein synthesis. Surprisingly, the cellular response to adaptive doses did not include induction of oxidative-stress defense enzymes nor of transcripts involved in general cellular defense systems.


Assuntos
Genoma Fúngico , Peróxidos Lipídicos/farmacologia , Saccharomyces cerevisiae/genética , Transcrição Gênica/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Peroxidação de Lipídeos , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA