Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34301887

RESUMO

The origin of the indentation size effect has been extensively researched over the last three decades, following the establishment of nanoindentation as a broadly used small-scale mechanical testing technique that enables hardness measurements at submicrometer scales. However, a mechanistic understanding of the indentation size effect based on direct experimental observations at the dislocation level remains limited due to difficulties in observing and quantifying the dislocation structures that form underneath indents using conventional microscopy techniques. Here, we employ precession electron beam diffraction microscopy to "look beneath the surface," revealing the dislocation characteristics (e.g., distribution and total length) as a function of indentation depth for a single crystal of nickel. At smaller depths, individual dislocation lines can be resolved, and the dislocation distribution is quite diffuse. The indentation size effect deviates from the Nix-Gao model and is controlled by dislocation source starvation, as the dislocations are very mobile and glide away from the indented zone, leaving behind a relatively low dislocation density in the plastically deformed volume. At larger depths, dislocations become highly entangled and self-arrange to form subgrain boundaries. In this depth range, the Nix-Gao model provides a rational description because the entanglements and subgrain boundaries effectively confine dislocation movement to a small hemispherical volume beneath the contact impression, leading to dislocation interaction hardening. The work highlights the critical role of dislocation structural development in the small-scale mechanistic transition in indentation size effect and its importance in understanding the plastic deformation of materials at the submicron scale.

2.
ACS Appl Mater Interfaces ; 10(13): 11008-11017, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29528215

RESUMO

Simple and easily integrated design of flexible and transparent electrode materials affixed to polymer-based substrates hold great promise to have a revolutionary impact on the functionality and performance of energy storage devices for many future consumer electronics. Among these applications are touch sensors, roll-up displays, photovoltaic cells, health monitors, wireless sensors, and wearable communication devices. Here, we report an environmentally friendly, simple, and versatile approach to produce optically transparent and mechanically flexible all-solid-state supercapacitor devices. These supercapacitors were constructed on tin-doped indium oxide coated polyethylene terephthalate substrates by intercalation of a polymer-based gel electrolyte between two reduced graphene oxide (rGO) thin-film electrodes. The rGO electrodes were fabricated simply by drop-casting of graphene oxide (GO) films, followed by a novel low-temperature (≤250 °C) vacuum-assisted annealing approach for the in situ reduction of GO to rGO. A trade-off between the optical transparency and electrochemical performance is determined by the concentration of the GO in the initial dispersion, whereby the highest capacitance (∼650 µF cm-2) occurs at a relatively lower optical transmittance (24%). Notably, the all-solid-state supercapacitors demonstrated excellent mechanical flexibility with a capacity retention rate above 90% under various bending angles and cycles. These attributes underscore the potential of the present approach to provide a path toward the realization of thin-film-based supercapacitors as flexible and transparent energy storage devices for a variety of practical applications.

3.
Ann Bot ; 104(3): 417-30, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19423551

RESUMO

BACKGROUND AND AIMS: Laeliinae are a neotropical orchid subtribe with approx. 1500 species in 50 genera. In this study, an attempt is made to assess generic alliances based on molecular phylogenetic analysis of DNA sequence data. METHODS: Six DNA datasets were gathered: plastid trnL intron, trnL-F spacer, matK gene and trnK introns upstream and dowstream from matK and nuclear ITS rDNA. Data were analysed with maximum parsimony (MP) and Bayesian analysis with mixed models (BA). KEY RESULTS: Although relationships between Laeliinae and outgroups are well supported, within the subtribe sequence variation is low considering the broad taxonomic range covered. Localized incongruence between the ITS and plastid trees was found. A combined tree followed the ITS trees more closely, but the levels of support obtained with MP were low. The Bayesian analysis recovered more well-supported nodes. The trees from combined MP and BA allowed eight generic alliances to be recognized within Laeliinae, all of which show trends in morphological characters but lack unambiguous synapomorphies. CONCLUSIONS: By using combined plastid and nuclear DNA data in conjunction with mixed-models Bayesian inference, it is possible to delimit smaller groups within Laeliinae and discuss general patterns of pollination and hybridization compatibility. Furthermore, these small groups can now be used for further detailed studies to explain morphological evolution and diversification patterns within the subtribe.


Assuntos
Núcleo Celular/genética , DNA de Plantas/genética , Orchidaceae/genética , Filogenia , Plastídeos/genética , Sequência de Bases , Teorema de Bayes , Bases de Dados Genéticas , Plastídeos/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...