Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 26(Pt 5): 1751-1762, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490167

RESUMO

X-ray ptychography is a coherent diffraction imaging technique with a high resolving power and excellent quantitative capabilities. Although very popular in synchrotron facilities nowadays, its implementation with X-ray energies above 15 keV is very rare due to the challenges imposed by the high energies. Here, the implementation of high-energy X-ray ptychography at 17 and 33.6 keV is demonstrated and solutions to overcome the important challenges are provided. Among the particular aspects addressed are the use of an efficient high-energy detector, a long synchrotron beamline for the high degree of spatial coherence, a beam with 1% monochromaticity providing high flux, and efficient multilayer coated Kirkpatrick-Baez X-ray optics to shape the beam. The constraints imposed by the large energy bandwidth are carefully analyzed, as well as the requirements to sample correctly the high-energy diffraction patterns with small speckle size. In this context, optimized scanning trajectories allow the total acquisition time to be reduced by up to 35%. The paper explores these innovative solutions at the ID16A nano-imaging beamline by ptychographic imaging of a 200 nm-thick gold lithography sample.


Assuntos
Óptica e Fotônica/instrumentação , Intensificação de Imagem Radiográfica/instrumentação , Síncrotrons , Desenho de Equipamento , Ouro/química , Modelos Teóricos , Difração de Raios X , Raios X
2.
J Synchrotron Radiat ; 17(1): 107-18, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20029119

RESUMO

The first phase of the ESRF beamline ID23 to be constructed was ID23-1, a tunable MAD-capable beamline which opened to users in early 2004. The second phase of the beamline to be constructed is ID23-2, a monochromatic microfocus beamline dedicated to macromolecular crystallography experiments. Beamline ID23-2 makes use of well characterized optical elements: a single-bounce silicon (111) monochromator and two mirrors in Kirkpatrick-Baez geometry to focus the X-ray beam. A major design goal of the ID23-2 beamline is to provide a reliable, easy-to-use and routine microfocus beam. ID23-2 started operation in November 2005, as the first beamline dedicated to microfocus macromolecular crystallography. The beamline has taken the standard automated ESRF macromolecular crystallography environment (both hardware and software), allowing users of ID23-2 to be rapidly familiar with the microfocus environment. This paper describes the beamline design, the special considerations taken into account given the microfocus beam, and summarizes the results of the first years of the beamline operation.


Assuntos
Biopolímeros/química , Cristalografia por Raios X/instrumentação , Lentes , Síncrotrons/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , França , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...