Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 287(9): 1758-1776, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31647171

RESUMO

A narrow substrate range is a major limitation in exploiting enzymes more widely as catalysts in synthetic organic chemistry. For enzymes using two substrates, the simultaneous optimisation of both substrate specificities is also required for the rapid expansion of accepted substrates. Transketolase (TK) catalyses the reversible transfer of a C2 -ketol unit from a donor substrate to an aldehyde acceptor and suffers the limitation of narrow substrate scope for industrial applications. Herein, TK from Escherichia coli was engineered to accept both pyruvate, as a novel donor substrate, and unnatural acceptor aldehydes, including propanal, pentanal, hexanal and 3-formylbenzoic acid (FBA). Twenty single-mutant variants were first designed and characterised experimentally. Beneficial mutations were then recombined to construct a small library. Screening of this library identified the best variant with a 9.2-fold improvement in the yield towards pyruvate and propionaldehyde, relative to wild-type (WT). Pentanal and hexanal were used as acceptors to determine stereoselectivities of the reactions, which were found to be higher than 98% enantiomeric excess (ee) for the S configuration. Three variants were identified to be active for the reaction between pyruvate and 3-FBA. The best variant was able to convert 47% of substrate into product within 24 h, whereas no conversion was observed for WT. Docking experiments suggested a cooperation between the mutations responsible for donor and acceptor recognition, which would promote the activity towards both the acceptor and donor. The variants obtained have the potential to be used for developing catalytic pathways to a diverse range of high-value products.


Assuntos
Cetonas/metabolismo , Engenharia de Proteínas , Transcetolase/metabolismo , Biocatálise , Escherichia coli/enzimologia , Cetonas/química , Modelos Moleculares , Estrutura Molecular , Especificidade por Substrato , Transcetolase/química , Transcetolase/genética
2.
J Mol Biol ; 430(24): 5207-5216, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30365950

RESUMO

Determining the relationship between protein folding pathways on and off the ribosome remains an important area of investigation in biology. Studies on isolated domains have shown that alteration of the separation of residues in a polypeptide chain, while maintaining their spatial contacts, may affect protein stability and folding pathway. Due to the vectorial emergence of the polypeptide chain from the ribosome, chain connectivity may have an important influence upon cotranslational folding. Using MATH, an all ß-sandwich domain, we investigate whether the connectivity of residues and secondary structure elements is a key determinant of when cotranslational folding can occur on the ribosome. From Φ-value analysis, we show that the most structured region of the transition state for folding in MATH includes the N and C terminal strands, which are located adjacent to each other in the structure. However, arrest peptide force-profile assays show that wild-type MATH is able to fold cotranslationally, while some C-terminal residues remain sequestered in the ribosome, even when destabilized by 2-3 kcal mol-1. We show that, while this pattern of Φ-values is retained in two circular permutants in our studies of the isolated domains, one of these permutants can fold only when fully emerged from the ribosome. We propose that in the case of MATH, onset of cotranslational folding is determined by the ability to form a sufficiently stable folding nucleus involving both ß-sheets, rather than by the location of the terminal strands in the ribosome tunnel.


Assuntos
Ribossomos/metabolismo , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/química , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo , Cinética , Modelos Moleculares , Biossíntese de Proteínas , Conformação Proteica em Folha beta , Dobramento de Proteína , Estabilidade Proteica , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA