Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37430718

RESUMO

A Cyber-Physical System (CPS) is a network of cyber and physical elements that interact with each other. In recent years, there has been a drastic increase in the utilization of CPSs, which makes their security a challenging problem to address. Intrusion Detection Systems (IDSs) have been used for the detection of intrusions in networks. Recent advancements in the fields of Deep Learning (DL) and Artificial Intelligence (AI) have allowed the development of robust IDS models for the CPS environment. On the other hand, metaheuristic algorithms are used as feature selection models to mitigate the curse of dimensionality. In this background, the current study presents a Sine-Cosine-Adopted African Vultures Optimization with Ensemble Autoencoder-based Intrusion Detection (SCAVO-EAEID) technique to provide cybersecurity in CPS environments. The proposed SCAVO-EAEID algorithm focuses mainly on the identification of intrusions in the CPS platform via Feature Selection (FS) and DL modeling. At the primary level, the SCAVO-EAEID technique employs Z-score normalization as a preprocessing step. In addition, the SCAVO-based Feature Selection (SCAVO-FS) method is derived to elect the optimal feature subsets. An ensemble Deep-Learning-based Long Short-Term Memory-Auto Encoder (LSTM-AE) model is employed for the IDS. Finally, the Root Means Square Propagation (RMSProp) optimizer is used for hyperparameter tuning of the LSTM-AE technique. To demonstrate the remarkable performance of the proposed SCAVO-EAEID technique, the authors used benchmark datasets. The experimental outcomes confirmed the significant performance of the proposed SCAVO-EAEID technique over other approaches with a maximum accuracy of 99.20%.


Assuntos
Inteligência Artificial , Segurança Computacional , Algoritmos , Benchmarking , Meio Ambiente
2.
Artigo em Inglês | MEDLINE | ID: mdl-36768060

RESUMO

Big Data analytics is a technique for researching huge and varied datasets and it is designed to uncover hidden patterns, trends, and correlations, and therefore, it can be applied for making superior decisions in healthcare. Drug-drug interactions (DDIs) are a main concern in drug discovery. The main role of precise forecasting of DDIs is to increase safety potential, particularly, in drug research when multiple drugs are co-prescribed. Prevailing conventional method machine learning (ML) approaches mainly depend on handcraft features and lack generalization. Today, deep learning (DL) techniques that automatically study drug features from drug-related networks or molecular graphs have enhanced the capability of computing approaches for forecasting unknown DDIs. Therefore, in this study, we develop a sparrow search optimization with deep learning-based DDI prediction (SSODL-DDIP) technique for healthcare decision making in big data environments. The presented SSODL-DDIP technique identifies the relationship and properties of the drugs from various sources to make predictions. In addition, a multilabel long short-term memory with an autoencoder (MLSTM-AE) model is employed for the DDI prediction process. Moreover, a lexicon-based approach is involved in determining the severity of interactions among the DDIs. To improve the prediction outcomes of the MLSTM-AE model, the SSO algorithm is adopted in this work. To assure better performance of the SSODL-DDIP technique, a wide range of simulations are performed. The experimental results show the promising performance of the SSODL-DDIP technique over recent state-of-the-art algorithms.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Memória de Curto Prazo , Interações Medicamentosas , Algoritmos , Aprendizado de Máquina
3.
PLoS One ; 18(1): e0276510, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36662811

RESUMO

The establishment of grid-connected prosumer communities to bridge the demand-supply gap in developing nations, especially in rural areas will assist to minimize the use of carbon enriched fossil fuels and the resulting economic pressure. In the promoted study, an economic and ecosystem-friendly hybrid energy model is proposed for grid-connected prosumer community of 147 houses in district Kotli, AJK. The grid search algorithm-based HOMER software is used to simulate and analyze the load demand and biomass sources-based onsite collected data through a survey for an optimal proposed design. The research objectives are to minimize the net present cost (USD) of design, the per unit cost of energy (USD/kWh), and the carbon emissions (kgs/year). A sensitivity analysis based on photovoltaic module lifetime is also performed. The simulations show that the per unit cost of energy is reduced from 0.1 USD/kWh to 0.001 USD/kWh for the annual energy demand (kWh/year) of the community. The number of carbon emissions is also minimized from 122056 kgs/year to 1628 kgs/year through the proposed optimal energy model.


Assuntos
Ecossistema , Combustíveis Fósseis , Software , Algoritmos , Carbono
4.
Environ Technol ; 44(13): 1973-1984, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-34919033

RESUMO

ABSTRACTDue to industrialization, activities of human and urbanization, environment is getting polluted. Air pollution has become a main issue in the metropolitan areas of the world. To protect people from diseases, monitoring air quality plays an important thing. This air pollutant may lead to many health issues like respiratory and cardiac problems. The major air pollutants are NO, C6H6, CO, etc. Many research works have been done in predicting air pollution-based health issues, predicting air pollution levels, monitoring and controlling the polluted levels. But they are not efficient, cost of maintenance is high and insufficient tool for monitoring it. To overcome these issues, this paper implements hybrid algorithm of Decision Tree J48 and Grey Wolf Optimizer (DT-GWO). This DT-GWO is a better model to addresses the predicting of Air Quality Index (AQI), which minimizes the error rate, accurately and effectively predicting the air quality. The AQI values are categorised as good, moderate, unhealthy, very unhealthy and hazardous. The dataset used in this work is collected from Kaggle website which contains air pollutants details with air quality index values. Accuracy obtained for decision Tree J48 is 93.72%, grey wolf optimizer is 96.83% and our proposed work DT-GWO is 99.78%.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluição do Ar/prevenção & controle , Poluentes Atmosféricos/análise , Algoritmos , Aprendizado de Máquina , Árvores de Decisões , Monitoramento Ambiental
5.
PeerJ Comput Sci ; 9: e1596, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38192469

RESUMO

In recent days, cyber-physical systems (CPS) have become a new wave generation of human life, exploiting various smart and intelligent uses of automotive systems. In these systems, information is shared through networks, and data is collected from multiple sensor devices. This network has sophisticated control, wireless communication, and high-speed computation. These features are commonly available in CPS, allowing multi-users to access and share information through the network via remote access. Therefore, protecting resources and sensitive information in the network is essential. Many research works have been developed for detecting insecure networks and attacks in the network. This article introduces a framework, namely Deep Bagging Convolutional Neural Network with Heuristic Multiswarm Ant Colony Optimization (DCNN-HMACO), designed to enhance the secure transmission of information, improve efficiency, and provide convenience in Cyber-Physical Systems (CPS). The proposed framework aims to detect attacks in CPS effectively. Compared to existing methods, the DCNN-HMACO framework significantly improves attack detection rates and enhances overall system protection. While the accuracy rates of CNN and FCM are reported as 72.12% and 79.56% respectively, our proposed framework achieves a remarkable accuracy rate of 92.14%.

6.
Cogn Neurodyn ; 16(5): 1045-1057, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36237400

RESUMO

In recent days, Cognitive Cyber-Physical System (CCPS) has gained significant interest among interdisciplinary researchers which integrates machine learning (ML) and artificial intelligence (AI) techniques. This era is witnessing a rapid transformation in digital technology and AI where brain-inspired computing-based solutions will play a vital role in industrial informatics. The application of CCPS with brain-inspired computing in Industry 4.0 will create a significant impact on industrial evolution. Though the CCPSs in industrial environment offer several merits, security remains a challenging design issue. The rise of artificial intelligence AI techniques helps to address cybersecurity issues related to CCPS in industry 4.0 environment. With this motivation, this paper presents a new AI-enabled multimodal fusion-based intrusion detection system (AIMMF-IDS) for CCPS in industry 4.0 environment. The proposed model initially performs the data pre-processing technique in two ways namely data conversion and data normalization. In addition, improved fish swarm optimization based feature selection (IFSO-FS) technique is used for the appropriate selection of features. The IFSO technique is derived by the use of Levy Flight (LF) concept into the searching mechanism of the conventional FSO algorithm to avoid the local optima problem. Since the single modality is not adequate to accomplish enhanced detection performance, in this paper, a weighted voting based ensemble model is employed for the multimodal fusion process using recurrent neural network (RNN), bi-directional long short term memory (Bi-LSTM), and deep belief network (DBN), depicts the novelty of the work. The simulation analysis of the presented model highlighted the improved performance over the recent state of art techniques interms of different measures.

7.
Healthcare (Basel) ; 10(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36141218

RESUMO

Sign language has played a crucial role in the lives of impaired people having hearing and speaking disabilities. They can send messages via hand gesture movement. Arabic Sign Language (ASL) recognition is a very difficult task because of its high complexity and the increasing intraclass similarity. Sign language may be utilized for the communication of sentences, letters, or words using diverse signs of the hands. Such communication helps to bridge the communication gap between people with hearing impairment and other people and also makes it easy for people with hearing impairment to express their opinions. Recently, a large number of studies have been ongoing in developing a system that is capable of classifying signs of dissimilar sign languages into the given class. Therefore, this study designs an atom search optimization with a deep convolutional autoencoder-enabled sign language recognition (ASODCAE-SLR) model for speaking and hearing disabled persons. The presented ASODCAE-SLR technique mainly aims to assist the communication of speaking and hearing disabled persons via the SLR process. To accomplish this, the ASODCAE-SLR technique initially pre-processes the input frames by a weighted average filtering approach. In addition, the ASODCAE-SLR technique employs a capsule network (CapsNet) feature extractor to produce a collection of feature vectors. For the recognition of sign language, the DCAE model is exploited in the study. At the final stage, the ASO algorithm is utilized as a hyperparameter optimizer which in turn increases the efficacy of the DCAE model. The experimental validation of the ASODCAE-SLR model is tested using the Arabic Sign Language dataset. The simulation analysis exhibit the enhanced performance of the ASODCAE-SLR model compared to existing models.

8.
Biology (Basel) ; 11(8)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36009847

RESUMO

Epileptic seizures are a chronic and persistent neurological illness that mainly affects the human brain. Electroencephalogram (EEG) is considered an effective tool among neurologists to detect various brain disorders, including epilepsy, owing to its advantages, such as its low cost, simplicity, and availability. In order to reduce the severity of epileptic seizures, it is necessary to design effective techniques to identify the disease at an earlier stage. Since the traditional way of diagnosing epileptic seizures is laborious and time-consuming, automated tools using machine learning (ML) and deep learning (DL) models may be useful. This paper presents an intelligent deep canonical sparse autoencoder-based epileptic seizure detection and classification (DCSAE-ESDC) model using EEG signals. The proposed DCSAE-ESDC technique involves two major processes, namely, feature selection and classification. The DCSAE-ESDC technique designs a novel coyote optimization algorithm (COA)-based feature selection technique for the optimal selection of feature subsets. Moreover, the DCSAE-based classifier is derived for the detection and classification of different kinds of epileptic seizures. Finally, the parameter tuning of the DSCAE model takes place via the krill herd algorithm (KHA). The design of the COA-based feature selection and KHA-based parameter tuning shows the novelty of the work. For examining the enhanced classification performance of the DCSAE-ESDC technique, a detailed experimental analysis was conducted using a benchmark epileptic seizure dataset. The comparative results analysis portrayed the better performance of the DCSAE-ESDC technique over existing techniques, with maximum accuracy of 98.67% and 98.73% under binary and multi-classification, respectively.

9.
Comput Intell Neurosci ; 2022: 1698137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35607459

RESUMO

Recently, bioinformatics and computational biology-enabled applications such as gene expression analysis, cellular restoration, medical image processing, protein structure examination, and medical data classification utilize fuzzy systems in offering effective solutions and decisions. The latest developments of fuzzy systems with artificial intelligence techniques enable to design the effective microarray gene expression classification models. In this aspect, this study introduces a novel feature subset selection with optimal adaptive neuro-fuzzy inference system (FSS-OANFIS) for gene expression classification. The major aim of the FSS-OANFIS model is to detect and classify the gene expression data. To accomplish this, the FSS-OANFIS model designs an improved grey wolf optimizer-based feature selection (IGWO-FS) model to derive an optimal subset of features. Besides, the OANFIS model is employed for gene classification and the parameter tuning of the ANFIS model is adjusted by the use of coyote optimization algorithm (COA). The application of IGWO-FS and COA techniques helps in accomplishing enhanced microarray gene expression classification outcomes. The experimental validation of the FSS-OANFIS model has been performed using Leukemia, Prostate, DLBCL Stanford, and Colon Cancer datasets. The proposed FSS-OANFIS model has resulted in a maximum classification accuracy of 89.47%.


Assuntos
Inteligência Artificial , Lógica Fuzzy , Animais , Masculino , Algoritmos , Biologia Computacional , Expressão Gênica
10.
Healthcare (Basel) ; 10(4)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35455876

RESUMO

Recently, the COVID-19 epidemic has had a major impact on day-to-day life of people all over the globe, and it demands various kinds of screening tests to detect the coronavirus. Conversely, the development of deep learning (DL) models combined with radiological images is useful for accurate detection and classification. DL models are full of hyperparameters, and identifying the optimal parameter configuration in such a high dimensional space is not a trivial challenge. Since the procedure of setting the hyperparameters requires expertise and extensive trial and error, metaheuristic algorithms can be employed. With this motivation, this paper presents an automated glowworm swarm optimization (GSO) with an inception-based deep convolutional neural network (IDCNN) for COVID-19 diagnosis and classification, called the GSO-IDCNN model. The presented model involves a Gaussian smoothening filter (GSF) to eradicate the noise that exists from the radiological images. Additionally, the IDCNN-based feature extractor is utilized, which makes use of the Inception v4 model. To further enhance the performance of the IDCNN technique, the hyperparameters are optimally tuned using the GSO algorithm. Lastly, an adaptive neuro-fuzzy classifier (ANFC) is used for classifying the existence of COVID-19. The design of the GSO algorithm with the ANFC model for COVID-19 diagnosis shows the novelty of the work. For experimental validation, a series of simulations were performed on benchmark radiological imaging databases to highlight the superior outcome of the GSO-IDCNN technique. The experimental values pointed out that the GSO-IDCNN methodology has demonstrated a proficient outcome by offering a maximal sensy of 0.9422, specy of 0.9466, precn of 0.9494, accy of 0.9429, and F1score of 0.9394.

11.
Comput Intell Neurosci ; 2022: 4063354, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387253

RESUMO

Remote sensing image (RSI) scene classification has become a hot research topic due to its applicability in different domains such as object recognition, land use classification, image retrieval, and surveillance. During RSI classification process, a class label will be allocated to every scene class based on the semantic details, which is significant in real-time applications such as mineral exploration, forestry, vegetation, weather, and oceanography. Deep learning (DL) approaches, particularly the convolutional neural network (CNN), have shown enhanced outcomes on the RSI classification process owing to the significant aspect of feature learning as well as reasoning. In this aspect, this study develops fuzzy cognitive maps with a bird swarm optimization-based RSI classification (FCMBS-RSIC) model. The proposed FCMBS-RSIC technique inherits the advantages of fuzzy logic (FL) and swarms intelligence (SI) concepts. In order to transform the RSI into a compatible format, preprocessing is carried out. Besides, the features are produced by the use of the RetinaNet model. Besides, a FCM-based classifier is involved to allocate proper class labels to the RSIs and the classification performance can be improved by the design of bird swarm algorithm (BSA). The performance validation of the FCMBS-RSIC technique takes place using benchmark open access datasets, and the experimental results reported the enhanced outcomes of the FCMBS-RSIC technique over its state-of-the-art approaches.


Assuntos
Redes Neurais de Computação , Tecnologia de Sensoriamento Remoto , Algoritmos , Cognição , Inteligência , Tecnologia de Sensoriamento Remoto/métodos
12.
Healthcare (Basel) ; 11(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36611573

RESUMO

Oral cancer is considered one of the most common cancer types in several counties. Earlier-stage identification is essential for better prognosis, treatment, and survival. To enhance precision medicine, Internet of Medical Things (IoMT) and deep learning (DL) models can be developed for automated oral cancer classification to improve detection rate and decrease cancer-specific mortality. This article focuses on the design of an optimal Inception-Deep Convolution Neural Network for Oral Potentially Malignant Disorder Detection (OIDCNN-OPMDD) technique in the IoMT environment. The presented OIDCNN-OPMDD technique mainly concentrates on identifying and classifying oral cancer by using an IoMT device-based data collection process. In this study, the feature extraction and classification process are performed using the IDCNN model, which integrates the Inception module with DCNN. To enhance the classification performance of the IDCNN model, the moth flame optimization (MFO) technique can be employed. The experimental results of the OIDCNN-OPMDD technique are investigated, and the results are inspected under specific measures. The experimental outcome pointed out the enhanced performance of the OIDCNN-OPMDD model over other DL models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...