Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
J Sep Sci ; 46(18): e2300439, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37515368

RESUMO

Polymer monolithic stationary phases are designed as a continuous interconnected globular material perfused by macropores. Like packed column, where separation efficiency is related to particle diameter, the efficiency of monoliths can be enhanced by tuning the size of both the microglobules and macropores. This protocol described the synthesis of poly(styrene-co-divinylbenzene) monolithic stationary phases in capillary column formats. Moreover, guidelines are provided to tune the macropore structure targeting high-throughput and high-resolution monolith chromatography. The versatility of these columns is exemplified by their ability to separate tryptic digests, intact proteins, and oligonucleotides under a variety of chromatographic conditions. The repeatability of the presented column fabrication process is demonstrated by the successful creation of 12 columns in three different column batches, as evidenced by the consistency of retention times (coefficients of variance [c.v.] = 0.9%), peak widths (c.v. = 4.7%), and column pressures (c.v. = 3.1%) across the batches.


Assuntos
Polímeros , Proteínas , Polímeros/química , Cromatografia Líquida/métodos , Estireno , Pressão , Cromatografia Líquida de Alta Pressão/métodos
2.
J Chromatogr A ; 1699: 463991, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37104946

RESUMO

The effect of hydrophilic/lipophilic balance (HLB) of polyoxyethylene ethers of different chain lengths on the microporogenic properties of the Brij surfactants has been studied. The objective of this work is to help better understand the role of each porogen and to set criteria for selecting the proper non-ionic surfactant, based on the HLB value. Seven recipes of different porogen compositions were first prepared and the highest efficiency was achieved using decane/decanol/dodecanol mixture with Brij® 30. Then, four other Brij surfactants covering the entire HLB scale were tested, and the prepared monoliths were characterized by SEM, BET, FT-IR and chromatography. The results showed that increasing the HLB from 9.72 to 18.84 was accompanied by an increase in monolith density and surface areas. The optimum HLB range was found to be 10 to 15. Surfactants of lower HLB formed either nonporous or less efficient columns, while those of higher HLB formed non-permeable columns. Adjusting the HLB was possible by mixing surfactants of different HLB. The prepared monoliths could be used in the isocratic mode with a mobile phase consisting of a mixture of ACN and water (20:80, v/v) at a flow rate of 1.5 µL min-1 to separate five sulfa drugs. The separation results showed that the elution order of the compounds correlated with their lipophilicity, with sulfamerazine (logp = 0.52) being the first to elute, and sulfaquinoxoline (logp=1.70) being the most retained. The asymmetry factors of the separated compounds ranged between 1.18 and 1.25, and the resolution was found to be in the range 2.92-7.80. The prepared monoliths could be also successfully separate a mixture of four different nonsteroidal anti-inflammatory drugs and a mixture of four benzoic acid derivatives. This work assists in optimizing the surfactant-based porogenic mixture to meet the desired porosity, surface area, morphology and chromatographic separation requirements.


Assuntos
Cromatografia de Fase Reversa , Tensoativos , Espectroscopia de Infravermelho com Transformada de Fourier , Cromatografia de Fase Reversa/métodos , Interações Hidrofóbicas e Hidrofílicas , Porosidade
3.
J Chem Phys ; 158(5): 054114, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36754803

RESUMO

This study is devoted to the transport of neutral solutes through porous flat membranes, driven by the solute concentration difference in the reservoirs separated by the membrane. Transport occurs through membrane channels, which are assumed to be non-overlapping, identical, straight cylindrical pores connecting the reservoirs. The key quantities characterizing transport are membrane permeability and its diffusion resistance. Such transport problems arising in very different contexts, ranging from plant physiology and cell biology to chemical engineering, have been studied for more than a century. Nevertheless, an expression giving the permeability for a membrane of arbitrary thickness at arbitrary surface densities of the channel openings is still unknown. Here, we fill in the gap and derive such an expression. Since this expression is approximate, we compare its predictions with the permeability obtained from Brownian dynamics simulations and find good agreement between the two.

4.
J Chromatogr A ; 1691: 463813, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36709548

RESUMO

Over the past two decades significant technical advancement in the field of western blotting has been made possible through the utilization of microfluidic technologies. In this review we provide a critical overview of these advancements, highlighting the advantages and disadvantages of each approach. Particular attention is paid to the development of now commercially available systems, including those for single cell analysis. This review also discusses more recent developments, including algorithms for automation and/or improved quantitation, the utilization of different materials/chemistries, use of projection electrophoresis, and the development of triBlots. Finally, the review includes commentary on future advances in the field based on current developments, and the potential of these systems for use as point-of-care devices in healthcare.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Sistemas Automatizados de Assistência Junto ao Leito , Western Blotting , Automação
5.
RSC Adv ; 12(16): 9773-9785, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35424961

RESUMO

Poly(styrene-co-divinylbenzene)-based monoliths were prepared from the polymerisation of water-in-monomer high internal phase emulsions, where the water-soluble monomers acrylamide (AAm) or poly(ethylene glycol) diacrylate (PEGDA) (M w 258) were also included in the 90 vol% internal phase. Both AAm and PEGDA were found to act as co-surfactants, resulting in the obtainment of monoliths with greater homogeneity in some cases. As a result these materials demonstrated significantly improved chromatographic performance for the separation of a standard mixture of proteins using reversed-phase liquid chromatography, in comparison to monoliths prepared with no internal phase monomer. In particular, the columns grafted with PEGDA were capable of separating a more complex mixture consisting of seven components. The inclusion of monomers in the internal phase also allowed for the functionalisation of the monolith's surface where the degree of polymerisation that occurred in the internal phase, which was governed by the monomer content in the internal phase and initiation location, determined whether polymeric chains or a hydrogel were grafted to the surface. A monolith grafted with AAm was also found to be capable of retaining polar analytes as a result of the increase in surface hydrophilicity.

6.
Anal Chem ; 94(2): 1256-1263, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34978430

RESUMO

Continued advances in label-free electrical biosensors pave the way to simple, rapid, cost-effective, high-sensitivity, and quantitative biomarker testing at the point-of-care setting that would profoundly transform healthcare. However, implementation in routine diagnostics is faced with significant challenges associated with the inherent requirement for biofluid sample processing before and during testing. We present here a simple yet robust autonomous finger-prick blood sample processing platform integrated with nanoscale field-effect transistor biosensors and demonstrate the feasibility of measuring the SARS-CoV-2 nucleocapsid protein. The 3D-printed platform incorporates a high-yield blood-to-plasma separation module and a delay valve designed to terminate the assay at a specific time. The platform is driven by hydrostatic pressure to efficiently and automatically dispense plasma and washing/measurement buffer to the nanosensors. Our model study demonstrates the feasibility of detecting down to 1.4 pg/mL of the SARS-CoV-2 nucleocapsid protein within 25 min and with only minimal operator intervention.


Assuntos
COVID-19 , Sistemas Automatizados de Assistência Junto ao Leito , Biomarcadores , Humanos , Testes Imediatos , SARS-CoV-2
7.
J Chromatogr A ; 1654: 462464, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34438302

RESUMO

The effect of adding ethoxylated sorbitan ester surfactants (Tweens®) to poly(ethylene glycol) diacrylate-based monolithic recipes was investigated. Five different Tweens® have been evaluated to investigate the exact role of non-ionic surfactants in poly(ethylene glycol) diacrylate-based monolith preparations. These monoliths were characterized by scanning electron microscopy, infrared spectroscopy, and nitrogen physisorption analysis. Different morphological features, and surface areas were observed when different types of Tween® were included in the recipe; Tween® 20 and 85 showed small globules, while Tween® 40, 60 and 80 exhibited larger globular structures with different sizes and degrees of coalescence. The different Tween®-based monoliths were investigated for the chromatographic separation of mixtures consisting of hydroxybenzoic acids and alkylbenzenes. These columns were mechanically stable, except for Tween® 80. The highest methylene selectivity and the best overall performance were achieved by Tween® 60. The efficiency was increased by increasing the concentration of the Tween® 60 and the amount of poly(ethylene glycol) diacrylate Mn 700 in the recipes up to 30 wt%, each. Further increases in either Tween® 60 or poly(ethylene glycol) diacrylate Mn 700 led to formation of non-permeable columns. The optimized column was successfully used for separation of mixtures of nonsteroidal anti-inflammatory and sulfa drugs, with a maximum efficiency of 60,000 plates/m.


Assuntos
Técnicas de Química Analítica , Cromatografia , Ésteres , Polissorbatos , Tensoativos , Anti-Inflamatórios não Esteroides/isolamento & purificação , Técnicas de Química Analítica/métodos , Técnicas de Química Analítica/normas , Cromatografia/instrumentação , Cromatografia/normas , Ésteres/química , Hidroxibenzoatos , Polissorbatos/química
8.
ACS Appl Mater Interfaces ; 13(27): 32075-32083, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34190530

RESUMO

Polymer-based monolithic high-performance liquid chromatography (HPLC) columns are normally obtained by conventional free-radical polymerization. Despite being straightforward, this approach has serious limitations with respect to controlling the structural homogeneity of the monolith. Herein, we explore a reversible addition-fragmentation chain transfer (RAFT) polymerization method for the fabrication of porous polymers with well-defined porous morphology and surface chemistry in a confined 200 µm internal diameter (ID) capillary format. This is achieved via the controlled polymerization-induced phase separation (controlled PIPS) synthesis of poly(styrene-co-divinylbenzene) in the presence of a RAFT agent dissolved in an organic solvent. The effects of the radical initiator/RAFT molar ratio as well as the nature and amount of the organic solvent were studied to target cross-linked porous polymers that were chemically bonded to the inner wall of a modified silica-fused capillary. The morphological and surface properties of the obtained polymers were thoroughly characterized by in situ nuclear magnetic resonance (NMR) experiments, nitrogen adsorption-desorption experiments, elemental analyses, field-emission scanning electron microscopy (FESEM), scanning electron microscopy-energy-dispersive X-ray (SEM-EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS) as well as time-of-flight secondary ion mass spectrometry (ToF-SIMS) revealing the physicochemical properties of these styrene-based materials. When compared with conventional synthetic methods, the controlled-PIPS approach affects the kinetics of polymerization by delaying the onset of phase separation, enabling the construction of materials with a smaller pore size. The results demonstrated the potential of the controlled-PIPS approach for the design of porous monolithic columns suitable for liquid separation of biomolecules such as peptides and proteins.


Assuntos
Cromatografia Líquida/métodos , Polimerização , Peptídeos/isolamento & purificação , Porosidade , Proteínas/isolamento & purificação , Solventes/química
9.
Anal Chim Acta ; 1151: 338244, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33608083

RESUMO

Synthetic and natural macromolecules are commonly used in a variety of fields such as plastics, nanomedicine, biotherapeutics, drug delivery and tissue engineering. Characterising macromolecules in terms of their structural parameters (size, molar mass and distribution, architecture) is key to have a better understanding of their structure-property relationships. Size exclusion chromatography (SEC) is a commonly used technique for polymer characterization since it offers access to the determination of the size of a macromolecule, its molar mass and the molar mass distribution. Moreover, detectors that allow the determination of true molar masses, macromolecule's architecture and the composition of copolymers can be coupled to the chromatographic system. Like other chromatographic techniques, the stationary phase is of paramount importance for efficient SEC separations. This review presents the basic principles for the design of stationary phases for SEC as well as synthetic methods currently used in the field. Current status of fully-porous polymeric stationary phases used in SEC is reviewed and their advantages and limitations are also discussed. Finally, the potential of polymer monoliths in SEC is also covered, highlighting the limitations this column technology could address. However, further development in the polymer structure is needed to consider this column technology in the field of macromolecule separation.

10.
Anal Chem ; 93(5): 2802-2810, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33496173

RESUMO

The influence of the addition of various non-ionic surfactants to poly(ethylene glycol) diacrylate-based monolith formulations was studied. Eight non-ionic surfactants having different chemistries were chosen for this study. These surfactants were Brij L4, Span 80, IGEPAL CO-520, Tergitol 15S9, 2,4,7,9-tetramethyl-5-decyne-4,7-diol ethoxylate, Tween 40, Triton X-405, and Tetronic 701. The chemical structures of these surfactants have a variety of functional groups and cover a wide range of molecular weights (360-3600 g/mol), viscosities (60-1500 cP), and hydrophilic-lipophilic balances (1.0-17.6). The formed polymers were characterized by scanning electron microscopy, surface area measurement by the Brunauer-Emmet-Teller method, elemental analysis, and Fourier transform infrared. Four formulations, involving the use of surfactants, resulted in permeable materials when prepared in 150 µm ID silica capillaries. The chromatographic performance of the resulting columns in reversed-phase mode was evaluated and compared using a mixture of alkyl benzenes as test analytes. The highest efficiency and methylene selectivity were observed when Tween 40 was included in the formulation, using decane/decanol/dodecanol as coporogens. This porogenic mixture was successfully used for preparation of monolithic columns from a selection of methacrylate- and styrene-based monomers, including butylmethacrylate, hydroxyethymethacrylate, laurylmethacrylate, glycidyl methacrylate, bisphenol diacrylate, benzylmethacrylate, and N,N-dimethylacrylamide, as well as for divinylbenzene. These results show the applicability of this porogenic mixture for a variety of monolithic formulations, providing an approach for developing a universal porogen system.

11.
Food Res Int ; 125: 108559, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31554116

RESUMO

Ethanolic extracts of propolis are consumed for their health benefits even though direct consumption of alcoholic extracts is not always ideal. Natural Deep Eutectic Solvents (NADES) can potentially extract similar compounds as alcoholic extracts while being better for direct consumption. Therefore, in this work alternative solvents for the extraction of green propolis including its biomarker artepillin C were examined. Sixteen NADES made from low toxicity chemicals, including the essential amino acid l-lysine, were explored along with twelve individual NADES components and honey, which showed similar physical-chemical properties to NADES. At 50 °C NADES made from choline chloride-propylene glycol or lactic acid proved to be equal or better than the benchmark EtOH:Water 7:3 (v/v). Alternatively, aqueous l-lysine appeared as a potential solvent for the preparation of aqueous propolis extracts. From these findings NADES, honey and aqueous l-lysine solutions all demonstrated the potential to replace ethanol or water for extracting green propolis.


Assuntos
Colina/química , Lisina/química , Extratos Vegetais/química , Própole/química , Propilenoglicol/química , Solventes/química , Água/química , Colina/análise , Cromatografia Líquida de Alta Pressão/métodos , Lisina/análise , Extratos Vegetais/análise , Própole/análise , Propilenoglicol/análise , Solventes/análise , Água/análise
12.
Chem Soc Rev ; 48(14): 3740-3770, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31206104

RESUMO

Among the wide range of materials used for remediating environmental contaminants, modified and functionalised nanoclays show particular promise as advanced sorbents, improved dispersants, or biodegradation enhancers. However, many chemically modified nanoclay materials are incompatible with living organisms when they are used in natural systems with detrimental implications for ecosystem recovery. Here we critically review the pros and cons of functionalised nanoclays and provide new perspectives on the synthesis of environmentally friendly varieties. Particular focus is given to finding alternatives to conventional surfactants used in modified nanoclay products, and to exploring strategies in synthesising nanoclay-supported metal and metal oxide nanoparticles. A large number of promising nanoclay-based sorbents are yet to satisfy environmental biocompatibility in situ but opportunities are there to tailor them to produce "biocompatible" or regenerative/reusable materials.


Assuntos
Materiais Biocompatíveis/química , Recuperação e Remediação Ambiental , Nanocompostos/química , Humanos , Tamanho da Partícula , Propriedades de Superfície
13.
Anal Bioanal Chem ; 411(9): 1715-1727, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30617398

RESUMO

Preconcentration is the aspect of analytical method development covering the need to improve detection sensitivity. This review collects the advances in a diversity of approaches to achieve preconcentration by solvent removal. Evaporation in microfluidic and paper-based devices is reported in a variety of forms and later compared to membrane-assisted evaporation. Sample partitioning in an immiscible fluid is also described. The reported methodologies highlight the need to achieve good control of the gas-liquid interface to obtain accurate results. A comprehensive comparison of different strategies is presented here discussing their benefits and drawbacks as well as the research needs in this area. Graphical abstract ᅟ.

14.
J Sep Sci ; 42(2): 591-597, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30427122

RESUMO

Natural deep eutectic solvents have been used as an alternative to organic solvents for the extraction of plants metabolites, allowing for the extraction of compounds of different polarities, while being inexpensive, non-toxic, and easy to prepare. This work presents the comparison of the chromatographic profiles by high-performance liquid chromatography with diode-array detection obtained from Byrsonima intermedia (Malpighiaceae) using five choline chloride-based natural deep eutectic solvents, in addition to the most used traditional extraction solvents, methanol/water 7:3 and ethanol/water 7:3 v/v. A reference extract was used to tentatively identify compounds by high-performance liquid chromatography with tandem mass spectrometry. The water content appeared to be important for the extraction efficiency and the mixture choline chloride/glycerol was shown to be the best candidate for efficiently extracting this matrix when compared with the traditional extraction media in addition to being far greener as shown by the environmental analysis tool. Seven phenolic compounds (digalloyl quinic acid, proanthocyanidin dimer, galloylproanthocyanidin dimer, quercetin-O-hexoside, galloyl quercetin hexoside, quercetin-O-pentoside, and galloyl quercetin pentoside) were tentatively identified in all extracts. Moreover, the influence of these solvents on the antioxidant activity of the extracts was studied and the results for choline chloride/glycerol extracts were very similar to that of the traditional extraction solvents.


Assuntos
Colina/química , Malpighiaceae/química , Fenóis/isolamento & purificação , Folhas de Planta/química , Cromatografia Líquida de Alta Pressão , Malpighiaceae/metabolismo , Fenóis/química , Fenóis/metabolismo , Folhas de Planta/metabolismo , Solventes/química , Espectrometria de Massas em Tandem
15.
Anal Chim Acta ; 1047: 231-237, 2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30567655

RESUMO

Removal of organic solvent from sample extracts is required before analysis by reversed phase HPLC to preserve chromatographic performance and allow for bigger injection volumes, boosting sensitivity. Herein, an automated on-line extraction evaporation procedure is integrated with HPLC analysis. The evaporation occurs inside a 200 µm microfluidic channel confined by a vapor permeable membrane. A feedback control algorithm regulates evaporation rate keeping the output flow rate constant. The evaporation process across this membrane was firstly characterized with water/solvent mixtures showing organic solvent removal capabilities. This system allowed continuous methanol, ethanol and acetonitrile removal from samples containing up to 80% organic solvent. An evaporative injection procedure was developed demonstrating the use of the device for fully integrated extract reconstitution coupled to HPLC analysis, applied to analysis of the antibiotic chloramphenicol in milk samples. Sample reconstitution and collection was performed in less than 10 min and can be executed simultaneously to HPLC analysis of the previous sample in a routine workflow, thus having minimal impact on the total sample analysis time when run in a sequence.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Solventes/química , Acetonitrilas/química , Animais , Cloranfenicol/isolamento & purificação , Etanol/química , Metanol/química , Microfluídica/métodos , Leite/química , Sistemas On-Line
16.
RSC Adv ; 9(13): 7301-7313, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35519965

RESUMO

Poly(styrene-co-divinylbenzene) monoliths were prepared from the polymerisation of water-in-monomer high internal phase emulsions consisting of a 90 vol% internal phase and stabilised by the non-ionic surfactant Span 80®. The materials were prepared in capillary housings of various internal diameters ranging from 150 µm to 540 µm by simply passing the emulsion through the capillaries. When low shear (300 rpm) was used for emulsification, the droplet and resulting void size distributions were observed to shift towards lower values when the emulsions were forced through capillaries of internal diameter less than 540 µm and all columns exhibited significant radial heterogeneity. When high shear was employed (14 000 rpm) the resulting emulsions preserved their structure when forced through these capillaries and possessed narrower void size distributions with no obvious radial heterogeneity observed upon curing. This resulted in significantly improved chromatographic performance for the separation of a standard mixture of proteins when compared to the materials prepared under low shear.

17.
Anal Chim Acta ; 1032: 163-177, 2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30143214

RESUMO

Oligo(acrylic acid), oligoAA are important species currently used industrially in the stabilization of paints and also for the production of self-assembled polymer structures which have been shown to have useful applications in analytical separation methods and potentially in drug delivery systems. To properly tailor the synthesis of oligoAA, and its block co-oligomers synthesized by Reversible-Addition Fragmentation chain Transfer (RAFT) polymerization to applications, detailed knowledge about the chemical structure is needed. Commonly used techniques such as Size Exclusion Chromatography (SEC) and Electrospray Ionization-Mass Spectrometry (ESI-MS) suffer from poor resolution and non-quantitative distributions, respectively. In this work free solution Capillary Electrophoresis (CE) has been thoroughly investigated as an alternative, allowing for the separation of oligoAA by molar mass and the RAFT agent end group. The method was then extended to block co-oligomers of acrylic acid and styrene. Peak capacities up to 426 were observed for these 1D CE separations, 10 times greater than what has been achieved for Liquid Chromatography (LC) of oligostyrenes. To provide a comprehensive insight into the chemical structure of these materials 1H and 13C Nuclear Magnetic Resonance (NMR) spectroscopy was used to provide an accurate average chain length and reveal the presence of branching. The chain length at which branching is detected was investigated with the results showing a degree of branching of 1% of the monomer units in oligoAA with an average chain length of 9 monomer units, which was the shortest chain length at which branching could be detected. This branching is suspected to be a result of both intermolecular and intramolecular transfer reactions. The combination of free solution CE and NMR spectroscopy is shown to provide a near complete elucidation of the chemical structure of oligoAA including the average chain length and branching as well as the chain length and RAFT agent end group distribution. Furthermore, the purity in terms of the dead chains and unreacted RAFT agent was quantified. The use of free solution CE and 1H NMR spectroscopy demonstrated in this work can be routinely applied to oligoelectrolytes and their block co-oligomers to provide an accurate characterization which allows for better design of the materials produced from these oligomers.

18.
Anal Bioanal Chem ; 410(17): 4235, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29744560

RESUMO

The authors would like to call the reader's attention to the following: The instrument they used to measure the volumetric precision of the dispensing devices is not called "VMS" but "PCS®".

19.
Anal Bioanal Chem ; 410(16): 3705-3713, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29651524

RESUMO

Over the past six decades, acetonitrile (ACN) has been the most employed organic modifier in reversed-phase high-performance liquid chromatography (RP-HPLC), followed by methanol (MeOH). However, from the growing environmental awareness that leads to the emergence of "green analytical chemistry," new research has emerged that includes finding replacements to problematic ACN because of its low sustainability. Deep eutectic solvents (DES) can be produced from an almost infinite possible combinations of compounds, while being a "greener" alternative to organic solvents in HPLC, especially those prepared from natural compounds called natural DES (NADES). In this work, the use of three NADES as the main organic component in RP-HPLC, rather than simply an additive, was explored and compared to the common organic solvents ACN and MeOH but additionally to the greener ethanol for separating two different mixtures of compounds, one demonstrating the elution of compounds with increasing hydrophobicity and the other comparing molecules of different functionality and molar mass. To utilize NADES as an organic modifier and overcome their high viscosity monolithic columns, temperatures at 50 °C and 5% ethanol in the mobile phase were used. NADES are shown to give chromatographic performances in between those observed for ACN and MeOH when eluotropic strength, resolution, and peak capacity were taken into consideration, while being less environmentally impactful as shown by the HPLC-Environmental Assessment Tool (HPLC-EAT) metric. With the development of proper technologies, DES could open a new class of mobile phases increasing the possibilities of new separation selectivities while reducing the environmental impact of HPLC analyses. Graphical abstract Natural deep eutectic solvents versus traditional solvents in HPLC.

20.
Anal Bioanal Chem ; 410(14): 3315-3323, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29623384

RESUMO

An accurate and precise 3 µL blood collection and dispensing system is presented for the preparation of dried blood spot (DBS) samples. Using end-to-end glass capillaries in conjugation with pre-punched DBS pads, a blood micro collection system was developed to eliminate the haematocrit dispersion, widely associated with DBS technology, while providing better levels of accuracy and precision during sample preparation. This methodology is compared to traditional micro-volume blood collection systems, such as a pipette and a digitally controlled analytical syringe. Results showed that % of recovery for the capillary methodology was closer to 100% across the three haematocrit (HCT) levels tested and when prepared by two users (98 to 100% for capillaries, 78 to 104% for pipette and 93 to 97% for digital syringe) attesting a higher accuracy. Additionally, by taking advantage of the capillary action mechanism to collect and dispense autonomously the desired volume of blood onto the DBS pad, coefficients of variation between two individuals were significantly lower than with standard methodologies (capillaries-0.05 to 0.77%, pipette-12.71 to 18.53% and digital syringe-0.72 to 1.77%). This alternate aspiration and dispensing methodology could be used by different users without compromising accuracy or precision when handling low volumes of blood during the pre-analytical steps. Graphical abstract Comparison of novel capillary dispensing methodology for dried blood spot sample preparation with pipette and digital syringe methodologies through accuracy and precision measurements of caffeine.


Assuntos
Coleta de Amostras Sanguíneas/instrumentação , Teste em Amostras de Sangue Seco/instrumentação , Cafeína/sangue , Desenho de Equipamento , Hematócrito , Humanos , Reprodutibilidade dos Testes , Tamanho da Amostra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...