Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 104(7): 1894-1899, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32396053

RESUMO

Vegetative grafting is a common method of transmitting and propagating 'Candidatus Liberibacter asiaticus', the bacterial species accepted as the causal agent of the citrus disease huanglongbing (HLB). Generally, infected tissue that is grafted to a receptor tree remains in place indefinitely to ensure transmission. In this study, individual HLB-symptomatic leaves were grafted as 'Ca. L. asiaticus' inoculum sources to receptor trees of six citrus types and removed after an inoculation period (IP) of 21, 51, or 81 days. The goal was to assess the effect of varying IPs on transmission of bacteria to the receptor tree and on the successful establishment of a new infection. Survival analysis of data from three trials showed a significantly reduced proportion of infected trees with an IP of 21 days compared with IPs of 51 and 81 days but that there was no significant difference in the proportion of infected trees between IPs of 51 and 81 days. In addition, the time to first detection of pathogen DNA in an infected tree was delayed significantly for the 21-day IP when compared with the 51- and 81-day IPs. Survival analysis showed that the probability of infection of sweet orange trees was significantly higher than for trees of five other citrus types throughout the experiment. There was no significant difference between the infection probabilities of these latter five citrus types. The data from this study show that successful infection by grafting is dependent upon the time of exposure to the inoculum, that shorter IPs increase the time needed to establish a systemic infection, and that citrus types vary in their overall susceptibility to infection by 'Ca. L. asiaticus'.


Assuntos
Citrus , Infecções , Rhizobiaceae , Humanos , Doenças das Plantas , Folhas de Planta
2.
Phytopathology ; 108(10): 1165-1171, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29757704

RESUMO

'Candidatus Liberibacter asiaticus' is a phloem-colonizing intracellular bacterial pathogen of citrus associated with the disease huanglongbing. A study of patterns of colonization and bacterial population growth in new growth of different citrus types was conducted by pruning infected citron, sweet orange, sour orange, mandarin, citrange, and Citrus macrophylla trees to force the growth of axillary and adventitious shoots. The first three leaves on newly emerged shoots were collected at 30, 60, and 90 days to assess colonization and population growth of 'Ca. L. asiaticus' using real time PCR (qPCR). Single trials were conducted with mandarin and citron, two trials each for citrange, sour orange and sweet orange, and four trials for C. macrophylla. In citron the proportion of colonized leaves increased significantly over time, with 67, 85, and 96% of leaves colonized at 30, 60, and 90 days, respectively. For the other citrus types, the exact proportion of colonized leaves differed, but colonization exceeded 60% in mandarin, sour orange, and citrange, and exceeded 80% at 30 days in two trials with sweet orange and three trials with C. macrophylla, but there was no significant increase in the proportion of colonized leaves at 60 and 90 days. Bacteria were readily detected by 30 days in new leaves of all citrus types. Differences in the growth of the bacterial population between citrus types and at different times of the year were noted, but common trends were apparent. In general, bacterial titers peaked at 60 days, except in leaves of C. macrophylla where bacterial titers peaked at 30 days. The early and consistently high proportion of leaf colonization observed for new growth of sweet orange during two trials and for C. macrophylla during three trials indicates a near synchronous colonization of new leaves by 30 days.


Assuntos
Citrus/microbiologia , Rhizobiaceae/fisiologia , DNA Bacteriano , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Fatores de Tempo
3.
Phytopathology ; 106(5): 452-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26807818

RESUMO

Huanglongbing (HLB) is a chronic, progressive decline disease in citrus associated with a systemic infection by the bacterium 'Candidatus Liberibacter asiaticus'. Transmission of the bacterium in the field is by the Asian citrus psyllid, Diaphorina citri Kuwayama. Experimental propagation of 'Ca. L. asiaticus' is done primarily by grafting pieces of bud wood from an infected plant. To produce a small-scale model system for investigation of pathogen biology, we investigated grafting single leaves from infected citrus plants as sources of inoculum for propagation of the bacterium. In total, 162 plants ranging in age from 3 to 18 months were grafted. Grafting with intact asymptomatic and HLB-symptomatic leaves resulted in 61 of 78 (78%) and 35 of 41 (85%) of the plants infected with 'Ca. L. asiaticus', respectively. Inoculum consisting of the leaf petiole only or only an inoculum tissue remnant under the bark of the receptor tree resulted in 6 of 12 (50%) and 7 of 31 (23%) infected trees, respectively. Real-time polymerase chain reaction (qPCR) assays verified the infection in plants, a majority of which developed the foliar blotchy mottle symptom considered diagnostic for HLB, while some plants also displayed the stunted, chlorotic shoots for which the disease is named. The qPCR data together with the symptoms displayed demonstrated that individual leaves from infected trees can serve as effective inoculum sources for transmission and propagation of 'Ca. L. asiaticus' via grafting.


Assuntos
Citrus/microbiologia , Patologia Vegetal , Técnicas Microbiológicas , Doenças das Plantas
4.
PLoS One ; 10(11): e0140826, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26580079

RESUMO

'Candidatus Liberibacter asiaticus' (CLas), the bacterial pathogen associated with citrus greening disease, is transmitted by Diaphorina citri, the Asian citrus psyllid. Interactions among D. citri and its microbial endosymbionts, including 'Candidatus Profftella armatura', are likely to impact transmission of CLas. We used quantitative mass spectrometry to compare the proteomes of CLas(+) and CLas(-) populations of D. citri, and found that proteins involved in polyketide biosynthesis by the endosymbiont Profftella were up-regulated in CLas(+) insects. Mass spectrometry analysis of the Profftella polyketide diaphorin in D. citri metabolite extracts revealed the presence of a novel diaphorin-related polyketide and the ratio of these two polyketides was changed in CLas(+) insects. Insect proteins differentially expressed between CLas(+) and CLas(-) D. citri included defense and immunity proteins, proteins involved in energy storage and utilization, and proteins involved in endocytosis, cellular adhesion, and cytoskeletal remodeling which are associated with microbial invasion of host cells. Insight into the metabolic interdependence between the insect vector, its endosymbionts, and the citrus greening pathogen reveals novel opportunities for control of this disease, which is currently having a devastating impact on citrus production worldwide.


Assuntos
Proteínas de Bactérias/genética , Citrus/microbiologia , Hemípteros/microbiologia , Proteínas de Insetos/genética , Policetídeos/metabolismo , Proteoma/genética , Animais , Proteínas de Bactérias/metabolismo , Regulação da Expressão Gênica , Hemípteros/genética , Hemípteros/imunologia , Proteínas de Insetos/metabolismo , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Doenças das Plantas/microbiologia , Proteoma/metabolismo , Rhizobiaceae/fisiologia , Simbiose
5.
Phytopathology ; 104(1): 15-26, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23883155

RESUMO

Huanglongbing, or citrus greening disease, is associated with infection by the phloem-limited bacterium 'Candidatus Liberibacter asiaticus'. Infection with 'Ca. L. asiaticus' is incurable; therefore, knowledge regarding 'Ca. L. asiaticus' biology and pathogenesis is essential to develop a treatment. However, 'Ca. L. asiaticus' cannot currently be successfully cultured, limiting its study. To gain insight into the conditions conducive for growth of 'Ca. L. asiaticus' in vitro, 'Ca. L. asiaticus' inoculum obtained from seed of fruit from infected pomelo trees (Citrus maxima 'Mato Buntan') was added to different media, and cell viability was monitored for up to 2 months using quantitative polymerase chain reaction in conjunction with ethidium monoazide. Media tested included one-third King's B (K), K with 50% juice from the infected fruit, K with 50% commercially available grapefruit juice, and 100% commercially available grapefruit juice. Results show that juice-containing media dramatically prolong viability compared with K in experiments reproduced during 2 years using different juice sources. Furthermore, biofilm formed at the air-liquid interface of juice cultures contained 'Ca. L. asiaticus' cells, though next-generation sequencing indicated that other bacterial genera were predominant. Chemical characterization of the media was conducted to discuss possible factors sustaining 'Ca. L. asiaticus' viability in vitro, which will contribute to future development of a culture medium for 'Ca. L. asiaticus'.


Assuntos
Bebidas , Citrus paradisi/química , Doenças das Plantas/microbiologia , Rhizobiaceae/efeitos dos fármacos , Sementes/química , Citrus paradisi/microbiologia , Meios de Cultura/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Rhizobiaceae/genética , Rhizobiaceae/crescimento & desenvolvimento , Sementes/microbiologia
6.
PLoS One ; 8(11): e78994, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24223873

RESUMO

Citrus greening (Huanglongbing, HLB) is one of the most destructive diseases of citrus worldwide. In South Asia HLB has been known for more than a century, while in Americas the disease was found relatively recently. HLB is associated with three species of 'Candidatus Liberibacter' among which 'Ca. Liberibacter asiaticus' (CLas) has most wide distribution. Recently, a number of studies identified different regions in the CLas genome with variable number of tandem repeats (VNTRs) that could be used for examination of CLas diversity. One of the objectives of the work presented here was to further validate the VNTR analysis-based approach by assessing the stability of these repeats upon multiplication of the pathogen in a host over an extended period of time and upon its passaging from a host to a host using CLas populations from Florida. Our results showed that the numbers of tandem repeats in the four loci tested display very distinguishable "signature profiles" for the two Florida-type CLas haplotype groups. Remarkably, the profiles do not change upon passage of the pathogen in citrus and psyllid hosts as well as after its presence within a host over a period of five years, suggesting that VNTR analysis-based approach represents a valid methodology for examination of the pathogen populations in various geographical regions. Interestingly, an extended analysis of CLas populations in different locations throughout Florida and in several countries in the Caribbean and Central America regions and in Mexico where the pathogen has been introduced recently demonstrated the dispersion of the same haplotypes of CLas. On the other hand, these CLas populations appeared to differ significantly from those obtained from locations where the disease has been present for a much longer time.


Assuntos
Citrus/microbiologia , Repetições Minissatélites/genética , Doenças das Plantas/microbiologia , Rhizobiaceae/genética , Rhizobiaceae/fisiologia , Animais , Região do Caribe , América Central , DNA Bacteriano/genética , Florida , Variação Genética , Geografia , Haplótipos , Hemípteros/microbiologia , Interações Hospedeiro-Patógeno , México , Reação em Cadeia da Polimerase , Polimorfismo Genético , Dinâmica Populacional
7.
Phytopathology ; 103(6): 545-54, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23676087

RESUMO

'Candidatus Liberibacter asiaticus' is the bacterium implicated as a causal agent of the economically damaging disease of citrus called huanglongbing (HLB). Vertical transmission of the organism through seed to the seedling has not been demonstrated. Previous studies using real-time polymerase chain reaction assays indicated abundant bacterial 16S rRNA sequences in seed coats of citrus seed but the presence of intact bacterial cells was not demonstrated. We used microscopy to verify that intact bacterial cells were present in citrus seed coats. Bacterial cells with the morphology and physical dimensions appropriate for 'Ca. L. asiaticus' were seen in phloem sieve elements in the vascular bundle of grapefruit seed coats using transmission electron microscopy (TEM). Fluorescence in situ hybridization (FISH) analyses utilizing probes complementary to the 'Ca. L. asiaticus' 16S rRNA gene revealed bacterial cells in the vascular tissue of intact seed coats of grapefruit and pummelo and in fragmented vascular bundles excised from grapefruit seed coats. The physical measurements and the morphology of individual bacterial cells were consistent with those ascribed in the literature to 'Ca. L. asiaticus'. No bacterial cells were observed in preparations of seed from fruit from noninfected trees. A small library of clones amplified from seed coats from a noninfected tree using degenerate primers targeting prokaryote 16S rRNA gene sequences contained no 'Ca. L. asiaticus' sequences, whereas 95% of the sequences in a similar library from DNA from seed coats from an infected tree were identified as 'Ca. L. asiaticus', providing molecular genetic corroboration that the bacterial cells observed by TEM and FISH in seed coats from infected trees were 'Ca. L. asiaticus'.


Assuntos
Citrus/microbiologia , Hibridização in Situ Fluorescente/métodos , Rhizobiaceae/isolamento & purificação , Rhizobiaceae/ultraestrutura , Sementes/microbiologia , Sementes/ultraestrutura , Citrus/ultraestrutura , DNA Bacteriano , RNA Bacteriano/genética , RNA Ribossômico 16S , Rhizobiaceae/genética
8.
Plant Dis ; 97(3): 339-345, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30722356

RESUMO

Citrus tristeza virus (CTV) is the most destructive viral pathogen of citrus and has been an important concern for the citrus industry in the Dominican Republic. Earlier studies documented widespread distribution of mild isolates of the T30 genotype, which caused no disease in the infected trees, and a low incidence of isolates of the VT and T3 genotypes, which were associated with economically damaging decline and stem-pitting symptoms in sweet orange and Persian lime, the two major citrus varieties grown in the Dominican Republic. In light of the dramatic increase in the number of severely diseased citrus trees throughout the country over the last decade, suggesting that field populations of CTV have changed, we examined the CTV pathosystem in the Dominican Republic to assess the dynamics of virus populations. In this work, we characterized the molecular composition of 163 CTV isolates from different citrus-growing regions. Our data demonstrate a dramatic change in CTV populations, with the VT genotype now widely disseminated throughout the different regions and with the presence of two new virus genotypes, T36 and RB. Multiple infections of trees resulted in development of complex virus populations composed of different genotypes.

9.
Phytopathology ; 101(10): 1242-50, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21714779

RESUMO

Huanglongbing is an economically damaging disease of citrus associated with infection by 'Candidatus Liberibacter asiaticus'. Transmission of the organism via infection of seeds has not been demonstrated but is a concern since some citrus varieties, particularly those used as rootstocks in commercial plantings are propagated from seed. We compared the incidence of detection of 'Ca. Liberibacter asiaticus' DNA in individual fruit peduncles, seed coats, seeds, and in germinated seedlings from 'Sanguenelli' sweet orange and 'Conners' grapefruit fruits sampled from infected trees. Using real-time quantitative PCR (qPCR) we detected pathogen DNA in nucleic acid extracts of 36 and 100% of peduncles from 'Sanguenelli' and from 'Conners' fruits, respectively. We also detected pathogen DNA in extracts of 37 and 98% of seed coats and in 1.6 and 4% of extracts from the corresponding seeds of 'Sanguenelli' and 'Conners', respectively. Small amounts of pathogen DNA were detected in 10% of 'Sanguenelli' seedlings grown in the greenhouse, but in none of 204 extracts from 'Conners' seedlings. Pathogen DNA was detected in 4.9% and in 89% of seed coats peeled from seeds of 'Sanguenelli' and 'Conners' which were germinated on agar, and in 5% of 'Sanguenelli' but in none of 164 'Conners' seedlings which grew from these seeds on agar. No pathogen DNA was detected in 'Ridge Pineapple' tissue at 3 months post-grafting onto 'Sanguenelli' seedlings, even when pathogen DNA had been detected initially in the 'Sanguenelli' seedling. Though the apparent colonization of 'Conners' seeds was more extensive and nearly uniform compared with 'Sanguenelli' seeds, no pathogen DNA was detected in 'Conners' seedlings grown from these seeds. For either variety, no association was established between the presence of pathogen DNA in fruit peduncles and seed coats and in seedlings.


Assuntos
Citrus/microbiologia , Doenças das Plantas/microbiologia , Rhizobiaceae/isolamento & purificação , Sementes/microbiologia , Citrus paradisi/microbiologia , DNA Bacteriano/genética , Germinação , Folhas de Planta/microbiologia , RNA Ribossômico 16S/genética , Rhizobiaceae/genética , Plântula/microbiologia
10.
J Virol ; 84(3): 1314-25, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19923189

RESUMO

Superinfection exclusion or homologous interference, a phenomenon in which a primary viral infection prevents a secondary infection with the same or closely related virus, has been observed commonly for viruses in various systems, including viruses of bacteria, plants, and animals. With plant viruses, homologous interference initially was used as a test of virus relatedness to define whether two virus isolates were "strains" of the same virus or represented different viruses, and subsequently purposeful infection with a mild isolate was implemented as a protective measure against isolates of the virus causing severe disease. In this study we examined superinfection exclusion of Citrus tristeza virus (CTV), a positive-sense RNA closterovirus. Thirteen naturally occurring isolates of CTV representing five different virus strains and a set of isolates originated from virus constructs engineered based on an infectious cDNA clone of T36 isolate of CTV, including hybrids containing sequences from different isolates, were examined for their ability to prevent superinfection by another isolate of the virus. We show that superinfection exclusion occurred only between isolates of the same strain and not between isolates of different strains. When isolates of the same strain were used for sequential plant inoculation, the primary infection provided complete exclusion of the challenge isolate, whereas isolates from heterologous strains appeared to have no effect on replication, movement or systemic infection by the challenge virus. Surprisingly, substitution of extended cognate sequences from isolates of the T68 or T30 strains into T36 did not confer the ability of resulting hybrid viruses to exclude superinfection by those donor strains. Overall, these results do not appear to be explained by mechanisms proposed previously for other viruses. Moreover, these observations bring an understanding of some previously unexplained fundamental features of CTV biology and, most importantly, build a foundation for the strategy of selecting mild isolates that would efficiently exclude severe virus isolates as a practical means to control CTV diseases.


Assuntos
Closterovirus/patogenicidade , Superinfecção , Closterovirus/classificação , Closterovirus/genética , DNA Complementar , DNA Viral , Ensaio de Imunoadsorção Enzimática , Genes Virais , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie , Nicotiana/virologia
11.
Virology ; 390(1): 110-21, 2009 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-19481775

RESUMO

Deletion and alanine-substitution mutants of the Tomato spotted wilt virus NSm protein were generated to identify domains involved in tubule formation, movement and symptomatology using a heterologous Tobacco mosaic virus expression system. Two regions of NSm, G(19)-S(159) and G(209)-V(283), were required for both tubule formation in protoplasts and cell-to-cell movement in plants, indicating a correlation between these activities. Three amino acid groups, D(154), EYKK(205-208) and EEEEE(284-288) were linked with long-distance movement in Nicotiana benthamiana. EEEEE(284-288) was essential for NSm-mediated long-distance movement, whereas D(154) was essential for tubule formation and cell-to-cell movement; indicating separate genetic controls for cell-to-cell and long-distance movement. The region I(57)-N(100) was identified as the determinant of foliar necrosis in Nicotiana benthamiana, and mutagenesis of HH(93-94) greatly reduced necrosis. These findings are likely applicable to other tospovirus species, especially those within the 'New World' group as NSm sequences are highly conserved.


Assuntos
Tospovirus/fisiologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/fisiologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Sequência Conservada , Primers do DNA/genética , Dados de Sequência Molecular , Movimento , Mutagênese , Filogenia , Doenças das Plantas/virologia , Proteínas do Movimento Viral em Plantas/química , Proteínas do Movimento Viral em Plantas/genética , Proteínas do Movimento Viral em Plantas/fisiologia , Estrutura Terciária de Proteína , Protoplastos/virologia , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Nicotiana/virologia , Tospovirus/genética , Tospovirus/patogenicidade , Proteínas não Estruturais Virais/genética
12.
Virology ; 389(1-2): 122-31, 2009 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-19446304

RESUMO

During replication, Citrus tristeza virus (CTV) produces large amounts of two unusual subgenomic (sg) RNAs that are positive-stranded and 5' coterminal. Although these RNAs are produced in similar amounts and are similar in size, with LMT1 ( approximately 750 nt) only slightly larger than LMT2 ( approximately 650), we found that the similar sgRNAs are produced differently. We previously showed that the LMT1 RNA is produced by premature termination during genomic RNA synthesis. However, LMT2 production was found to correlate with virion assembly instead of RNA replication. The time course of accumulation of the LMT2 RNA occurred late, coinciding with virion accumulation. The long flexuous virions of CTV contain two coat proteins that encapsidate the virions in a polar manner. The major coat protein encapsidates approximately 97% of the virion, while the minor capsid protein encapsidates the remainder of the genome beginning in the 5' non-translated region with the transition zone at approximately 630 nucleotides from the 5' end. The section of the virion RNA that was encapsidated by CPm was identical in size to the LMT2 RNA, suggesting that the LMT2 RNA represented a portion of the viral RNA protected by CPm encapsidation. Mutations that abrogated encapsidation by CPm also abolished the accumulation of LMT2 RNA. Thus, these two unusual but similar RNAs are produced via different pathways, one from RNA replication and one processed by the virion assembly process. To our knowledge, this represents the first evidence of a viral RNA processed by the assembly mechanism.


Assuntos
Proteínas do Capsídeo/metabolismo , Closterovirus/fisiologia , RNA Viral/biossíntese , Montagem de Vírus , Sequência de Aminoácidos , Sequência de Bases , Proteínas do Capsídeo/genética , Closterovirus/genética , Regulação Viral da Expressão Gênica , Genoma Viral , Dados de Sequência Molecular , Doenças das Plantas/virologia , Protoplastos/virologia , RNA Viral/genética , Nicotiana/virologia
13.
Phytopathology ; 99(4): 423-31, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19271984

RESUMO

Citrus tatter leaf virus isolated from Meyer lemon trees (CTLV-ML) from California and Florida induces bud union incompatibility of citrus trees grafted on the widely used trifoliate and trifoliate hybrid rootstocks. The complete genome sequence of CTLV-ML was determined to be 6,495 nucleotides (nts), with two overlapping open reading frames (ORFs) and a poly (A) tail at the 3' end. The genome organization is similar to other capilloviruses, with ORF1 (nts 37 to 6,354) encoding a putative 242-kDa polyprotein which contains replication-associated domains plus a coat protein (CP), and ORF2 (nts 4,788 to 5,750), which is located within ORF1 in a different reading frame and encodes a putative movement protein. Although the proteins encoded by CTLV-ML possesses 84 to 96% amino acid sequence identity with strains of Apple stem grooving virus (ASGV), we observed two strikingly different regions in ORF1: variable region I (amino acids 532 to 570) and variable region II (amino acids 1,583 to 1,868), with only 15 to 18 and 56 to 62% identities, respectively, with the corresponding regions of ASGV strains. Conditions for a herbaceous systemic assay host were optimized in which the wild-type virus induced systemic infection in Phaseolus vulgaris cv. Light Red Kidney (LRK) bean plants at 19 or 22 degrees C but not at higher temperatures. In vitro transcripts generated from full-length cDNA clones induced systemic symptoms on LRK bean plants similar to that of the wild-type virus. Replication of the recombinant virus was confirmed by hybridization of a 5' positive-stranded RNA-specific probe to a genome-sized RNA and by reverse-transcription polymerase chain reaction.


Assuntos
Citrus/virologia , Flexiviridae/genética , Genoma Viral , Interações Hospedeiro-Patógeno , Sequência de Aminoácidos , Clonagem Molecular , DNA Complementar/genética , Flexiviridae/classificação , Dados de Sequência Molecular , Phaseolus/virologia , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA
14.
Virology ; 385(2): 521-8, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19155038

RESUMO

The members of Capillovirus genus encode two overlapping open reading frames (ORFs): ORF1 encodes a large polyprotein containing the replication-associated proteins plus a coat protein (CP), and ORF2 encodes a movement protein (MP), located within ORF1 in a different reading frame. Organization of the CP sequence as part of the replicase ORF is unusual in capilloviruses. In this study, we examined the capillovirus genome expression strategy by characterizing viral RNAs produced by Citrus tatter leaf virus (CTLV), isolate ML, a Capillovirus. CTLV-ML produced a genome-length RNA of approximately 6.5-kb and two 3'-terminal sgRNAs in infected tissue that contain the MP and CP coding sequences (3'-sgRNA1), and the CP coding sequence (3'-sgRNA2), respectively. Both 3'-sgRNAs initiate at a conserved octanucleotide (UUGAAAGA), and are 1826 (3'-sgRNA1) and 869 (3'-sgRNA2) nts with 119 and 15 nt leader sequences, respectively, suggesting that these two 3'-sgRNAs could serve to express the MP and CP. Additionally, accumulation of two 5'-terminal sgRNAs of 5586 (5'-sgRNA1) and 4625 (5'-sgRNA2) nts was observed, and their 3'-termini mapped to 38-44 nts upstream of the transcription start sites of 3'-sgRNAs. The presence of a separate 3'-sgRNA corresponding to the CP coding sequence and its cognate 5'-terminal sgRNA (5'-sgRNA1) suggests that CTLV-ML produces a dedicated sg mRNA for the expression of its CP.


Assuntos
Proteínas do Capsídeo/genética , Flexiviridae/genética , Genoma Viral , Vírus de Plantas/genética , RNA Viral/metabolismo , Sequência de Bases , Proteínas do Capsídeo/metabolismo , Citrus/virologia , RNA Viral/química , RNA Viral/genética
15.
Exp Appl Acarol ; 45(3-4): 147-53, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18648995

RESUMO

Brevipalpus phoenicis (Geijskes) (Acari: Tenuipalpidae) is a polyphagous mite with worldwide distribution and it is also a vector of several plant viruses. In citrus, B. phoenicis transmits Citrus leprosis virus (CiLV), the causal agent of leprosis, a disease that costs millions of dollars per year for its prevention and control. Brevipalpus phoenicis mites reproduce through thelytokous parthenogenesis, producing haploid females. This characteristic is attributable to the presence of an endosymbiont bacterium of the genus Cardinium; however, very little is known about the biological and ecological implications of the presence of this endosymbiont in Brevipalpus mites. In order to investigate the role of Cardinium in the transmission of CiLV to citrus plants, our goal was to eliminate the bacterium from the mite. We assessed the effectiveness of different doses of radiation from a Cobalt-60 source to cure B. phoenicis populations from Cardinium sp. The efficiency of irradiation on the elimination of the endosymbiont was determined by counting the number of females and males obtained in the F(1) generation after irradiation and confirming the presence of the endosymbiont by PCR. Both radiation treatments influenced the oviposition period and the number of eggs laid by irradiated females. Also, irradiation eliminated the Cardinium endosymbiont and increased the number of males in progeny of the exposed populations. Although macroscopic morphological abnormalities were not observed among the treated mites, the mortality was higher compared to the non-irradiated control group.


Assuntos
Bacteroidetes/efeitos da radiação , Radioisótopos de Cobalto , Ácaros/microbiologia , Animais , Relação Dose-Resposta à Radiação , Feminino , Masculino , Ácaros/crescimento & desenvolvimento , Ácaros/efeitos da radiação , Doenças das Plantas
16.
Virus Res ; 135(2): 213-9, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18455828

RESUMO

The genus Ipomovirus is one of six currently recognized genera in the family Potyviridae. The complete nucleotide sequence of Squash vein yellowing virus (SqVYV), a putative ipomovirus recently described in Florida, has been determined. The 9836 nt SqVYV genomic RNA [excluding the poly(A) tail] has one large open reading frame encoding a single polyprotein of 3172 amino acids, typical of the genome organization for most members in the family Potyviridae. The 10 mature proteins predicted to be derived from the SqVYV polyprotein include P1a and P1b but no HC-Pro, similar to Cucumber vein yellowing virus (CVYV) but different from Sweet potato mild mottle virus (SPMMV), both recognized members of the genus Ipomovirus. Phylogenetic analysis of these proteins supports classification of SqVYV as a novel species within the genus Ipomovirus. However, the similar genome organization strategy of SqVYV and CVYV, which differs from that of SPMMV, indicates that the taxonomy of the genus Ipomovirus needs to be re-examined and a new genus created within the family Potyviridae to accommodate the observed discrepancies in ipomovirus genome organization.


Assuntos
Cucurbita/virologia , Cisteína Endopeptidases/metabolismo , Potyviridae/classificação , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Genoma Viral , Dados de Sequência Molecular , Filogenia , Poliproteínas/química , Poliproteínas/genética , Poliproteínas/metabolismo , Potyviridae/genética , Potyviridae/metabolismo , Análise de Sequência de DNA , Especificidade da Espécie , Proteínas Virais/química , Proteínas Virais/genética
17.
Plant Dis ; 92(5): 746-750, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-30769580

RESUMO

A magnetic bead-based immunocapture system using polyclonal antiserum against Apple stem grooving virus (ASGV) successfully facilitated polymerase chain reaction (PCR) amplification of sequences from three Citrus tatter leaf virus (CTLV) isolates originally isolated from the citrus host Meyer lemon. Primers designed from a pairwise alignment of genomic sequences of CTLV isolates from lily and from kumquat amplified two nonoverlapping genomic regions of 625 and 1,165 bp (approximately 28% of the CTLV genome) which were cloned and sequenced. Despite being propagated separately in the glasshouse for more than 40 years, the CTLV sequences from separate Meyer lemon sources were identical but had only approximately 80% nucleotide identity with the homologous regions of CTLV genomes of isolates from lily and kumquat. Neighbor-joining phylogenetic analysis indicated the CTLV isolates from Meyer lemon were distinct from but more closely related to CTLV from kumquat than from lily, and these CTLV sequences showed equivalent genetic distances from two ASGV isolates.

18.
PLoS One ; 2(9): e917, 2007 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-17878952

RESUMO

Recombination and reassortment of viral genomes are major processes contributing to the creation of new, emerging viruses. These processes are especially significant in long-term persistent infections where multiple viral genotypes co-replicate in a single host, generating abundant genotypic variants, some of which may possess novel host-colonizing and pathogenicity traits. In some plants, successive vegetative propagation of infected tissues and introduction of new genotypes of a virus by vector transmission allows for viral populations to increase in complexity for hundreds of years allowing co-replication and subsequent recombination of the multiple viral genotypes. Using a resequencing microarray, we examined a persistent infection by a Citrus tristeza virus (CTV) complex in citrus, a vegetatively propagated, globally important fruit crop, and found that the complex comprised three major and a number of minor genotypes. Subsequent deep sequencing analysis of the viral population confirmed the presence of the three major CTV genotypes and, in addition, revealed that the minor genotypes consisted of an extraordinarily large number of genetic variants generated by promiscuous recombination between the major genotypes. Further analysis provided evidence that some of the recombinants underwent subsequent divergence, further increasing the genotypic complexity. These data demonstrate that persistent infection of multiple viral genotypes within a host organism is sufficient to drive the large-scale production of viral genetic variants that may evolve into new and emerging viruses.


Assuntos
Vírus de RNA/genética , Recombinação Genética , Sequência de Bases , Biodiversidade , Primers do DNA , Genótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Exp Appl Acarol ; 42(1): 17-21, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17447014

RESUMO

Cardinium have been found as endosymbionts of Brevipalpus phoenicis, the mite vector of the Citrus leprosis virus. With the long-term objective being to understand the mechanisms of plant-virus-vector interactions, we evaluated the different storage conditions and periods, as well as the number of mites needed for PCR-amplification of such endosymbionts, making it possible to collect mites in different geographical regions without prolonged storage compromising subsequent analyses.


Assuntos
Cytophagaceae/genética , DNA Ribossômico/análise , Ácaros/microbiologia , Temperatura , Animais , Reação em Cadeia da Polimerase , Tamanho da Amostra , Simbiose , Fatores de Tempo
20.
Phytopathology ; 95(8): 909-17, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18944413

RESUMO

ABSTRACT Genetic markers amplified from three noncontiguous regions by sequence specific primers designed from the partial or complete genome sequences of Citrus tristeza virus (CTV) isolates T3, T30, T36, and VT were used to assess genetic relatedness of 372 isolates in an international collection. Eighty-five isolates were judged similar to the T3 isolate, 81 to T30, 11 to T36, and 89 to VT. Fifty-one isolates were mixed infections by two or more identifiable viral genotypes, and 55 isolates could not be assigned unequivocally to a group defined by marker patterns. Maximum parsimony analysis of aligned marker sequences supported the grouping of isolates on the basis of marker patterns only. Specific disease symptoms induced in select citrus host plants were shared across molecular groups, although symptoms were least severe among isolates grouped by markers with the T30 isolate and were most severe among isolates grouped by markers with the T3 isolate. Isolates assigned the same genotype showed variable symptoms and symptom severity. A classification strategy for CTV isolates is proposed that combines genetic marker patterns and nucleotide sequence data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...