Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gastroenterology ; 166(1): 103-116.e9, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37716376

RESUMO

BACKGROUND & AIMS: CXADR-like membrane protein (CLMP) is structurally related to coxsackie and adenovirus receptor. Pathogenic variants in CLMP gene have been associated with congenital short bowel syndrome, implying a role for CLMP in intestinal development. However, the contribution of CLMP to regulating gut development and homeostasis is unknown. METHODS: In this study, we investigated CLMP function in the colonic epithelium using complementary in vivo and in vitro approaches, including mice with inducible intestinal epithelial cell (IEC)-specific deletion of CLMP (ClmpΔIEC), intestinal organoids, IECs with overexpression, or loss of CLMP and RNA sequencing data from individuals with colorectal cancer. RESULTS: Loss of CLMP enhanced IEC proliferation and, conversely, CLMP overexpression reduced proliferation. Xenograft experiments revealed increased tumor growth in mice implanted with CLMP-deficient colonic tumor cells, and poor engraftment was observed with CLMP-overexpressing cells. ClmpΔIEC mice showed exacerbated tumor burden in an azoxymethane and dextran sulfate sodium-induced colonic tumorigenesis model, and CLMP expression was reduced in human colorectal cancer samples. Mechanistic studies revealed that CLMP-dependent regulation of IEC proliferation is linked to signaling through mTOR-Akt-ß-catenin pathways. CONCLUSIONS: These results reveal novel insights into CLMP function in the colonic epithelium, highlighting an important role in regulating IEC proliferation, suggesting tumor suppressive function in colon cancer.


Assuntos
Colite , Neoplasias do Colo , Animais , Humanos , Camundongos , Proliferação de Células , Colite/induzido quimicamente , Colite/metabolismo , Neoplasias do Colo/patologia , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Células Epiteliais/patologia , Mucosa Intestinal/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
2.
MethodsX ; 7: 100759, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32021819

RESUMO

PCR is a powerful tool for generating specific fragments of DNA that can be used to create gene variations or tagged expression constructs. Overlap extension PCR is a valuable technique that is commonly used for cloning large complex fragments, making edits to cloned genes or fusing two gene elements together. After difficulties in utilizing this technique following existing methods, we developed an optimized protocol. To accomplish this, three significant changes were made; 1) touchdown PCR cycling parameters were used to eliminate the need for optimizing PCR cycling conditions, 2) the high-fidelity, high-processivity Q5 DNA polymerase was used to improve full-length amplification quality, and 3) a reduced amount of primer in the final PCR amplification step decreased non-specific amplimers. This modified protocol results in consistent generation of gene fusion products, with little to no background and enhanced efficiency of the transgene construction process.

3.
MethodsX ; 7: 100800, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32021830

RESUMO

Adenovirus-associated virus is a powerful vector system for transducing cells in vivo. It is widely used in animal systems due to high transduction efficiency of non-dividing cells with more than a dozen serotypes that have preferential tissue tropism. The viral genome remains episomal in the nucleus but maintains sustained expression in terminally differentiated cells for several weeks to months. Despite the popularity of recombinant AAV (rAAV) vectors, quality control testing of the virus after production is largely limited to physical characteristics such as viral genomes/ml determinations and silver staining acrylamide gels to determine purity. Functional testing, in vivo, is not practical due to high cost and restricted access of animal care and long duration of the assay (2-3 weeks). Some functional testing can be accomplished in cultured cells such as HEK293 cells, but HEK293 cells limit the types of rAAV constructs that can be tested. Many rAAV constructs are designed to study neurons in the brain with neural-specific promoters and many are floxed with loxp sites to be "activated" only in Cre-expressing neurons in transgenic animals. To develop a reporter cell line for rapid rAAV quality control assessment of these neural-specific, floxed rAAV constructs, we used the lentiviral system to stably express Cre recombinase in the SH-SY5Y neuroblastoma cell line. •A simple and economic method to evaluate recombinant AAV in vitro.•Allows functional validation of rAAV across a wide range of serotypes and promoters.•Allows functional validation of Cre-dependent rAAV constructs.

4.
Mucosal Immunol ; 12(3): 668-678, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30745566

RESUMO

Junctional adhesion molecule-A (JAM-A) is a transmembrane glycoprotein expressed on leukocytes, endothelia, and epithelia that regulates biological processes including barrier function and immune responses. While JAM-A has been reported to facilitate tissue infiltration of leukocytes under inflammatory conditions, the contributions of leukocyte-expressed JAM-A in vivo remain unresolved. We investigated the role of leukocyte-expressed JAM-A in acute peritonitis induced by zymosan, lipopolysaccharide (LPS), or TNFα using mice with selective loss of JAM-A in myelomonocytic cells (LysM-Cre;Jam-afl/fl). Surprisingly, in LysM-Cre;Jam-afl/fl mice, loss of JAM-A did not affect neutrophil (PMN) recruitment into the peritoneum in response to zymosan, LPS, or TNFα although it was significantly reduced in Jam-aKO mice. In parallel, Jam-aKO peritoneal macrophages exhibited diminished CXCL1 chemokine production and decreased activation of NF-kB, whereas those from LysM-Cre;Jam-afl/fl mice were unaffected. Using Villin-Cre;Jam-afl/fl mice, targeted loss of JAM-A on intestinal epithelial cells resulted in increased intestinal permeability along with reduced peritoneal PMN migration as well as lower levels of CXCL1 and active NF-kB similar to that observed in Jam-aKO animals. Interestingly, in germ-free Villin-Cre;Jam-afl/fl mice, PMN recruitment was unaffected suggesting dependence on gut microbiota. Such observations highlight the functional link between a leaky gut and regulation of innate immune responses.


Assuntos
Moléculas de Adesão Celular/metabolismo , Mucosa Intestinal/imunologia , Macrófagos/imunologia , Neutrófilos/imunologia , Peritonite/imunologia , Receptores de Superfície Celular/metabolismo , Junções Íntimas/patologia , Animais , Moléculas de Adesão Celular/genética , Células Cultivadas , Quimiocina CXCL1/metabolismo , Modelos Animais de Doenças , Microbioma Gastrointestinal , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , NF-kappa B/metabolismo , Infiltração de Neutrófilos , Peritonite/induzido quimicamente , Permeabilidade , Receptores de Superfície Celular/genética , Zimosan
5.
Mol Biol Cell ; 30(5): 566-578, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30625033

RESUMO

Junctional adhesion molecule-A (JAM-A), an epithelial tight junction protein, plays an important role in regulating intestinal permeability through association with a scaffold signaling complex containing ZO-2, Afadin, and the small GTPase Rap2. Under inflammatory conditions, we report that the cytoplasmic tail of JAM-A is tyrosine phosphorylated (p-Y280) in association with loss of barrier function. While barely detectable Y280 phosphorylation was observed in confluent monolayers of human intestinal epithelial cells under basal conditions, exposure to cytokines TNFα, IFNγ, IL-22, or IL-17A, resulted in compromised barrier function in parallel with increased p-Y280. Phosphorylation was Src kinase dependent, and we identified Yes-1 and PTPN13 as a major kinase and phosphatase for p-JAM-A Y280, respectively. Moreover, cytokines IL-22 or IL-17A induced increased activity of Yes-1. Furthermore, the Src kinase inhibitor PP2 rescued cytokine-induced epithelial barrier defects and inhibited phosphorylation of JAM-A Y280 in vitro. Phosphorylation of JAM-A Y280 and increased permeability correlated with reduced JAM-A association with active Rap2. Finally, we observed increased phosphorylation of Y280 in colonic epithelium of individuals with ulcerative colitis and in mice with experimentally induced colitis. These findings support a novel mechanism by which tyrosine phosphorylation of JAM-A Y280 regulates epithelial barrier function during inflammation.


Assuntos
Células Epiteliais/metabolismo , Inflamação/patologia , Intestinos/patologia , Molécula A de Adesão Juncional/metabolismo , Fosfotirosina/metabolismo , Sequência de Aminoácidos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Citocinas/farmacologia , Sulfato de Dextrana , Células HEK293 , Humanos , Intestinos/química , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 13/metabolismo , Proteínas Proto-Oncogênicas c-yes/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Proteínas rap de Ligação ao GTP/metabolismo
6.
Am J Pathol ; 185(8): 2206-18, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26216285

RESUMO

The intestinal epithelium is a dynamic barrier that maintains the distinct environments of intestinal tissue and lumen. Epithelial barrier function is defined principally by tight junctions, which, in turn, depend on the regulated expression of claudin family proteins. Claudins are expressed differentially during intestinal epithelial cell (IEC) differentiation. However, regulatory mechanisms governing claudin expression during epithelial differentiation are incompletely understood. We investigated the molecular mechanisms regulating claudin-7 during IEC differentiation. Claudin-7 expression is increased as epithelial cells differentiate along the intestinal crypt-luminal axis. By using model IECs we observed increased claudin-7 mRNA and nascent heteronuclear RNA levels during differentiation. A screen for potential regulators of the CLDN7 gene during IEC differentiation was performed using a transcription factor/DNA binding array, CLDN7 luciferase reporters, and in silico promoter analysis. We identified hepatocyte nuclear factor 4α as a regulatory factor that bound endogenous CLDN7 promoter in differentiating IECs and stimulated CLDN7 promoter activity. These findings support a role of hepatocyte nuclear factor 4α in controlling claudin-7 expression during IEC differentiation.


Assuntos
Diferenciação Celular/genética , Claudinas/metabolismo , Células Epiteliais/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Mucosa Intestinal/metabolismo , Células CACO-2 , Claudinas/genética , Células Epiteliais/citologia , Regulação da Expressão Gênica , Células HT29 , Fator 4 Nuclear de Hepatócito/genética , Humanos , Mucosa Intestinal/citologia , Regiões Promotoras Genéticas
7.
J Clin Invest ; 125(3): 1215-27, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25664854

RESUMO

Epithelial restitution is an essential process that is required to repair barrier function at mucosal surfaces following injury. Prolonged breaches in epithelial barrier function result in inflammation and further damage; therefore, a better understanding of the epithelial restitution process has potential for improving the development of therapeutics. In this work, we demonstrate that endogenous annexin A1 (ANXA1) is released as a component of extracellular vesicles (EVs) derived from intestinal epithelial cells, and these ANXA1-containing EVs activate wound repair circuits. Compared with healthy controls, patients with active inflammatory bowel disease had elevated levels of secreted ANXA1-containing EVs in sera, indicating that ANXA1-containing EVs are systemically distributed in response to the inflammatory process and could potentially serve as a biomarker of intestinal mucosal inflammation. Local intestinal delivery of an exogenous ANXA1 mimetic peptide (Ac2-26) encapsulated within targeted polymeric nanoparticles (Ac2-26 Col IV NPs) accelerated healing of murine colonic wounds after biopsy-induced injury. Moreover, one-time systemic administration of Ac2-26 Col IV NPs accelerated recovery following experimentally induced colitis. Together, our results suggest that local delivery of proresolving peptides encapsulated within nanoparticles may represent a potential therapeutic strategy for clinical situations characterized by chronic mucosal injury, such as is seen in patients with IBD.


Assuntos
Anexina A1/fisiologia , Exossomos/fisiologia , Mucosa Intestinal/fisiopatologia , Animais , Anexina A1/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Linhagem Celular , Colite/sangue , Colite/fisiopatologia , Humanos , Mucosa Intestinal/efeitos dos fármacos , Camundongos Knockout , Nanopartículas , Peptídeos/administração & dosagem , Cicatrização
8.
Mol Biol Cell ; 25(19): 2894-904, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25079689

RESUMO

The proinflammatory cytokine interferon γ (IFNγ ) influences intestinal epithelial cell (IEC) homeostasis in a biphasic manner by acutely stimulating proliferation that is followed by sustained inhibition of proliferation despite continued mucosal injury. ß-Catenin activation has been classically associated with increased IEC proliferation. However, we observed that IFNγ inhibits IEC proliferation despite sustained activation of Akt/ß-catenin signaling. Here we show that inhibition of Akt/ß-catenin-mediated cell proliferation by IFNγ is associated with the formation of a protein complex containing phosphorylated ß-catenin 552 (pß-cat552) and 14.3.3ζ. Akt1 served as a bimodal switch that promotes or inhibits ß-catenin transactivation in response to IFNγ stimulation. IFNγ initially promotes ß-catenin transactivation through Akt-dependent C-terminal phosphorylation of ß-catenin to promote its association with 14.3.3ζ. Augmented ß-catenin transactivation leads to increased Akt1 protein levels, and active Akt1 accumulates in the nucleus, where it phosphorylates 14.3.3ζ to translocate 14.3.3ζ/ß-catenin from the nucleus, thereby inhibiting ß-catenin transactivation and IEC proliferation. These results outline a dual function of Akt1 that suppresses IEC proliferation during intestinal inflammation.


Assuntos
Proteínas 14-3-3/metabolismo , Interferon gama/farmacologia , Mucosa Intestinal/citologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , beta Catenina/antagonistas & inibidores , Animais , Células CHO , Linhagem Celular , Proliferação de Células , Cricetulus , Ativação Enzimática , Inflamação , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais
9.
Mol Biol Cell ; 25(18): 2710-9, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25031428

RESUMO

Tight junctions (TJs) are dynamic, multiprotein intercellular adhesive contacts that provide a vital barrier function in epithelial tissues. TJs are remodeled during physiological development and pathological mucosal inflammation, and differential expression of the claudin family of TJ proteins determines epithelial barrier properties. However, the molecular mechanisms involved in TJ remodeling are incompletely understood. Using acGFP-claudin 4 as a biosensor of TJ remodeling, we observed increased claudin 4 fluorescence recovery after photobleaching (FRAP) dynamics in response to inflammatory cytokines. Interferon γ and tumor necrosis factor α increased the proportion of mobile claudin 4 in the TJ. Up-regulation of claudin 4 protein rescued these mobility defects and cytokine-induced barrier compromise. Furthermore, claudins 2 and 4 have reciprocal effects on epithelial barrier function, exhibit differential FRAP dynamics, and compete for residency within the TJ. These findings establish a model of TJs as self-assembling systems that undergo remodeling in response to proinflammatory cytokines through a mechanism of heterotypic claudin-binding incompatibility.


Assuntos
Claudina-4/metabolismo , Claudinas/metabolismo , Interferon gama/fisiologia , Junções Íntimas/metabolismo , Fator de Necrose Tumoral alfa/fisiologia , Animais , Células CHO , Células CACO-2 , Cricetinae , Cricetulus , Células HeLa , Humanos , Camundongos , Multimerização Proteica
10.
Am J Pathol ; 184(3): 592-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24418259

RESUMO

Regional expression of Wingless/Int (Wnt) genes plays a central role in regulating intestinal development and homeostasis. However, our knowledge of such regional Wnt proteins in the colon remains limited. To understand further the effect of Wnt signaling components in controlling intestinal epithelial homeostasis, we investigated whether the physiological heterogeneity of the proximal and distal colon can be explained by differential Wnt signaling. With the use of a Wnt signaling-specific PCR array, expression of 84 Wnt-mediated signal transduction genes was analyzed, and a differential signature of Wnt-related genes in the proximal versus distal murine colon was identified. Several Wnt agonists (Wnt5a, Wnt8b, and Wnt11), the Wnt receptor frizzled family receptor 3, and the Wnt inhibitory factor 1 were differentially expressed along the colon length. These Wnt signatures were associated with differential epithelial cell proliferation and migration in the proximal versus distal colon. Furthermore, reduced Wnt/ß-catenin activity and decreased Wnt5a and Wnt11 expression were observed in mice lacking commensal bacteria, an effect that was reversed by conventionalization of germ-free mice. Interestingly, myeloid differentiation primary response gene 88 knockout mice showed decreased Wnt5a levels, indicating a role for Toll-like receptor signaling in regulating Wnt5a expression. Our results suggest that the morphological and physiological heterogeneity within the colon is in part facilitated by the differential expression of Wnt signaling components and influenced by colonization with bacteria.


Assuntos
Bactérias/metabolismo , Colo/microbiologia , Transdução de Sinais , Proteínas Wnt/metabolismo , Animais , Proliferação de Células , Colo/anatomia & histologia , Colo/metabolismo , Regulação Bacteriana da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota , Organismos Livres de Patógenos Específicos , Proteínas Wnt/genética , Proteína Wnt-5a
11.
J Biol Chem ; 288(21): 15229-39, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23558678

RESUMO

The gastrointestinal epithelium functions as an important barrier that separates luminal contents from the underlying tissue compartment and is vital in maintaining mucosal homeostasis. Mucosal wounds in inflammatory disorders compromise the critical epithelial barrier. In response to injury, intestinal epithelial cells (IECs) rapidly migrate to reseal wounds. We have previously observed that a membrane-associated, actin binding protein, annexin A2 (AnxA2), is up-regulated in migrating IECs and plays an important role in promoting wound closure. To identify the mechanisms by which AnxA2 promotes IEC movement and wound closure, we used a loss of function approach. AnxA2-specific shRNA was utilized to generate IECs with stable down-regulation of AnxA2. Loss of AnxA2 inhibited IEC migration while promoting enhanced cell-matrix adhesion. These functional effects were associated with increased levels of ß1 integrin protein, which is reported to play an important role in mediating the cell-matrix adhesive properties of epithelial cells. Because cell migration requires dynamic turnover of integrin-based adhesions, we tested whether AnxA2 modulates internalization of cell surface ß1 integrin required for forward cell movement. Indeed, pulse-chase biotinylation experiments in IECs lacking AnxA2 demonstrated a significant increase in cell surface ß1 integrin that was accompanied by decreased ß1 integrin internalization and degradation. These findings support an important role of AnxA2 in controlling dynamics of ß1 integrin at the cell surface that in turn is required for the active turnover of cell-matrix associations, cell migration, and wound closure.


Assuntos
Anexina A2/metabolismo , Movimento Celular/fisiologia , Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Integrina beta1/metabolismo , Mucosa Intestinal/metabolismo , Anexina A2/genética , Células CACO-2 , Adesão Celular/fisiologia , Matriz Extracelular/genética , Humanos , Integrina beta1/genética , Transporte Proteico/fisiologia , Proteólise , Cicatrização/fisiologia
12.
J Clin Invest ; 123(1): 443-54, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23241962

RESUMO

N-formyl peptide receptors (FPRs) are critical regulators of host defense in phagocytes and are also expressed in epithelia. FPR signaling and function have been extensively studied in phagocytes, yet their functional biology in epithelia is poorly understood. We describe a novel intestinal epithelial FPR signaling pathway that is activated by an endogenous FPR ligand, annexin A1 (ANXA1), and its cleavage product Ac2-26, which mediate activation of ROS by an epithelial NADPH oxidase, NOX1. We show that epithelial cell migration was regulated by this signaling cascade through oxidative inactivation of the regulatory phosphatases PTEN and PTP-PEST, with consequent activation of focal adhesion kinase (FAK) and paxillin. In vivo studies using intestinal epithelial specific Nox1(-/-IEC) and AnxA1(-/-) mice demonstrated defects in intestinal mucosal wound repair, while systemic administration of ANXA1 promoted wound recovery in a NOX1-dependent fashion. Additionally, increased ANXA1 expression was observed in the intestinal epithelium and infiltrating leukocytes in the mucosa of ulcerative colitis patients compared with normal intestinal mucosa. Our findings delineate a novel epithelial FPR1/NOX1-dependent redox signaling pathway that promotes mucosal wound repair.


Assuntos
Anexina A1/metabolismo , Colite Ulcerativa/metabolismo , Mucosa Intestinal/metabolismo , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidases/metabolismo , Transdução de Sinais , Cicatrização , Animais , Anexina A1/genética , Linhagem Celular , Colite Ulcerativa/genética , Colite Ulcerativa/patologia , Feminino , Regulação da Expressão Gênica/genética , Humanos , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , NADH NADPH Oxirredutases/genética , NADPH Oxidase 1 , NADPH Oxidases/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 12/genética , Proteína Tirosina Fosfatase não Receptora Tipo 12/metabolismo , Espécies Reativas de Oxigênio/metabolismo
13.
Biochem Biophys Res Commun ; 397(3): 592-7, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20617560

RESUMO

The Apical Junctional Complex (AJC) encompassing the tight junction (TJ) and adherens junction (AJ) plays a pivotal role in regulating epithelial barrier function and epithelial cell proliferative processes through signaling events that remain poorly characterized. A potential regulator of AJC protein expression is Glycogen Synthase Kinase-3 (GSK-3). GSK-3 is a constitutively active kinase that is repressed during epithelial-mesenchymal transition (EMT). In the present study, we report that GSK-3 activity regulates the structure and function of the AJC in polarized model intestinal (SK-CO15) and kidney (Madin-Darby Canine Kidney (MDCK)) epithelial cells. Reduction of GSK-3 activity, either by small molecule inhibitors or siRNA targeting GSK-3 alpha and beta mRNA, resulted in increased permeability to both ions and bulk solutes. Immunofluorescence labeling and immunoblot analyses revealed that the barrier defects correlated with decreased protein expression of AJC transmembrane proteins Occludin, Claudin-1 and E-cadherin without influencing other TJ proteins, Zonula Occludens-1 (ZO-1) and Junctional Adhesion Molecule A (JAM-A). The decrease in Occludin and E-cadherin protein expression correlated with downregulation of the corresponding mRNA levels for these respective proteins following GSK-3 inhibition. These observations implicate an important role of GSK-3 in the regulation of the structure and function of the AJC that is mediated by differential modulation of mRNA transcription of key AJC proteins, Occludin, Claudin-1 and E-cadherin.


Assuntos
Junções Aderentes/metabolismo , Caderinas/biossíntese , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas de Membrana/biossíntese , Animais , Linhagem Celular , Claudina-1 , Cães , Epitélio/metabolismo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Humanos , Ocludina , Permeabilidade
14.
Virology ; 347(1): 160-74, 2006 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-16380146

RESUMO

Symbionts often exhibit significant reductions in genome complexity while pathogens often exhibit increased complexity through acquisition and diversification of virulence determinants. A few organisms have evolved complex life cycles in which they interact as symbionts with one host and pathogens with another. How the predicted and opposing influences of symbiosis and pathogenesis affect genome evolution in such instances, however, is unclear. The Polydnaviridae is a family of double-stranded (ds) DNA viruses associated with parasitoid wasps that parasitize other insects. Polydnaviruses (PDVs) only replicate in wasps but infect and cause severe disease in parasitized hosts. This disease is essential for survival of the parasitoid's offspring. Thus, a true mutualism exists between PDVs and wasps as viral transmission depends on parasitoid survival and parasitoid survival depends on viral infection of the wasp's host. To investigate how life cycle and ancestry affect PDVs, we compared the genomes of Campoletis sonorensis ichnovirus (CsIV) and Microplitis demolitor bracovirus (MdBV). CsIV and MdBV have no direct common ancestor, yet their encapsidated genomes share several features including segmentation, diversification of virulence genes into families, and the absence of genes required for replication. In contrast, CsIV and MdBV share few genes expressed in parasitized hosts. We conclude that the similar organizational features of PDV genomes reflect their shared life cycle but that PDVs associated with ichneumonid and braconid wasps have likely evolved different strategies to cause disease in the wasp's host and promote parasitoid survival.


Assuntos
Genoma Viral , Polydnaviridae/genética , Polydnaviridae/patogenicidade , Animais , DNA Viral/genética , Lepidópteros/parasitologia , Dados de Sequência Molecular , Filogenia , Polydnaviridae/classificação , Polydnaviridae/fisiologia , Sequências Repetitivas de Ácido Nucleico , Especificidade da Espécie , Simbiose/genética , Virulência/genética , Replicação Viral/genética , Vespas/virologia
15.
Curr Protoc Protein Sci ; Chapter 14: 14.8.1-14.8.7, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18429298

RESUMO

The covalent attachment of small ubiquitin-like modifier (SUMO) proteins to specific lysine residues of target proteins, a process termed sumoylation, is a recently discovered protein modification that plays an important role in regulating many diverse cellular processes. For this reason there is significant interest in identifying new sumoylated proteins and the lysine residue(s) within these target proteins where SUMO attachment occurs. Such knowledge will allow determination of the functional consequences of sumoylation through mutation of the relevant sequences. This unit describes two different experimental approaches for ascertaining specific protein sumoylation: the first is based on immunoprecipitation of the protein of interest followed by SUMO immunoblotting. The second involves incubation of the protein (either an in vitro translation product or a purified recombinant protein) in a reconstituted in vitro sumoylation enzymatic reaction followed by visualization of sumoylated protein as a higher than normal molecular-weight band in SDS-PAGE.


Assuntos
Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Eletroforese em Gel de Poliacrilamida , Imunoprecipitação
16.
Methods Mol Biol ; 301: 329-38, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15917643

RESUMO

Small ubiquitin-related modifier (SUMO) is an ubiquitin-like protein that is covalently attached to a variety of target proteins. Unlike ubiquitination, sumoylation does not target proteins for proteolytic breakdown, but is involved in regulation of protein function, nuclear targeting, and the formation of subcellular structures. Because SUMO is involved in such a plethora of functions and modifies numerous proteins it is important to identify proteins that are sumoylated in order to increase our understanding of how this modification affects protein function and localization. This overview describes techniques utilized for the detection of sumoylated proteins. The techniques covered include immunoprecipitation, an in vitro sumoylation assay, and gel shift mobility assays that have been used to identify SUMO-modified proteins.


Assuntos
Núcleo Celular/enzimologia , Proteínas de Ligação a DNA/análise , Proteínas de Choque Térmico/análise , Processamento de Proteína Pós-Traducional , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/análise , Fatores de Transcrição/análise , Western Blotting/métodos , Células HeLa , Fatores de Transcrição de Choque Térmico , Humanos , Imunoprecipitação/métodos , Transporte Proteico
17.
Cell Stress Chaperones ; 9(2): 214-20, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15497507

RESUMO

Heat shock transcription factor (Hsf)-1 and Hsf2 are members of the heat shock factor (HSF) protein family involved in heat shock protein (hsp) gene regulation, a regulation that is critical for the ability of cells to survive exposure to stress conditions. Although the role of Hsf1 in binding and activating transcription of hsp gene promoters in response to cell stress is well established, how Hsf2 enhances stress-induced hsp expression is not understood. To gain an insight into the critical conserved features of the regulation and function of Hsf2, we have identified and characterized the Hsf2 protein from Xenopus laevis. We found that, similar to its human counterpart, Xenopus Hsf2 is sumoylated at lysine 82 and that, as it does in human Hsf2, the modification event of the small ubiquitin-related modifier 1 functions to increase the deoxyribonucleic acid-binding activity of this transcription factor in Xenopus. These results indicate that sumoylation is an evolutionarily conserved modification of Hsf2 proteins, supporting the position of this modification as a critical regulator of Hsf2 function.


Assuntos
DNA/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Transcrição Gênica , Xenopus/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Evolução Molecular , Proteínas de Choque Térmico/genética , Lisina/metabolismo , Dados de Sequência Molecular , Proteína SUMO-1/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição , Proteínas de Xenopus
19.
Biochem Biophys Res Commun ; 303(1): 196-200, 2003 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-12646186

RESUMO

The transcriptional regulatory protein HSF1 is the key mediator of induced heat shock protein gene expression in response to elevated temperature and other stresses. Our previous studies identified stress-induced SUMO-1 modification of HSF1 as an important regulator of the DNA-binding activity of this factor. The underlying molecular mechanism by which stress leads to sumoylation of HSF1 was unknown. Prompted by previous studies indicating stress-induced phosphorylation at serine 307 of HSF1, a site very near the sumoylation site at lysine 298, we examined the role of this phosphorylation event in regulating SUMO-1 modification of HSF1. Using a combination of transfection and in vitro phosphorylation/sumoylation experiments, our results indicate that phosphorylation at serine 307 stimulates sumoylation of HSF1. Our results also reveal a role for a conserved leucine zipper sequence in the C-terminal region of HSF1 in inhibiting its SUMO-1 modification. Based on these data, we postulate that phosphorylation at serine 307 could stimulate HSF1 sumoylation by causing a conformation change that relieves the inhibitory effect of the C-terminal leucine zipper.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Proteína SUMO-1/metabolismo , Sequência de Aminoácidos , Proteínas de Ligação a DNA/química , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Células HeLa , Fatores de Transcrição de Choque Térmico , Temperatura Alta , Humanos , Leucina/química , Lisina/química , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Modelos Genéticos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Fosforilação , Testes de Precipitina , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Proteína SUMO-1/química , Serina/química , Temperatura , Fatores de Transcrição , Transfecção
20.
J Gen Virol ; 83(Pt 10): 2393-2402, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12237420

RESUMO

Campoletis sonorensis ichnovirus (CsIV) is a symbiotic virus associated with the endoparasitic wasp C. sonorensis. The virus is injected into the wasp's host, Heliothis virescens, during oviposition. One CsIV gene has been identified as a repeat element (rep) gene and encodes a ubiquitous imperfectly conserved 540 bp sequence. We report the sequencing and mapping of a rep-containing segment, segment I, that hybridizes to a known rep sequence from segment O(1). Analysis of this 8.6 kbp segment identified three ORFs having high similarity to the 540 bp rep sequence. All three rep sequence ORFs were expressed in parasitized H. virescens as well as in C. sonorensis tissues. Two of these rep genes, I 0.9 and I 1.1, have single copies of the 540 bp repeat sequence, while the third rep gene, I 1.2, has two imperfect copies, which are more similar to each other than to sequences on the segment I single-motif genes. Like the CsIV BHv 0.9 rep gene, the segment I rep genes lack introns and a signal peptide, suggesting that they are not secreted. Based on their similarity in nucleotide sequence, predicted amino acid sequence and gene structure, the three segment I repeat-containing genes, I 0.9, I 1.1 and I 1.2, are new members of the rep gene family.


Assuntos
Genes Virais , Polydnaviridae/genética , Sequências Repetitivas de Ácido Nucleico , Vespas/virologia , Sequência de Aminoácidos , Animais , Feminino , Expressão Gênica , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...