Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6759, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903781

RESUMO

Although increased temperatures are known to reinforce the effects of habitat destruction at local to landscape scales, evidence of their additive or interactive effects is limited, particularly over larger spatial extents and longer timescales. To address these deficiencies, we created a dataset of land-use changes over 75 years, documenting the loss of over half (>3000 km2) the semi-natural grassland of Great Britain. Pairing this dataset with climate change data, we tested for relationships to distribution changes in birds, butterflies, macromoths, and plants (n = 1192 species total). We show that individual or additive effects of climate warming and land conversion unambiguously increased persistence probability for 40% of species, and decreased it for 12%, and these effects were reflected in both range contractions and expansions. Interactive effects were relatively rare, being detected in less than 1 in 5 species, and their overall effect on extinction risk was often weak. Such individualistic responses emphasise the importance of including species-level information in policies targeting biodiversity and climate adaptation.


Assuntos
Borboletas , Animais , Reino Unido , Borboletas/fisiologia , Ecossistema , Biodiversidade , Mudança Climática
2.
Nat Ecol Evol ; 7(2): 250-263, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36443467

RESUMO

Many companies have made zero-deforestation commitments (ZDCs) to reduce carbon emissions and biodiversity losses linked to tropical commodities. However, ZDCs conserve areas primarily based on tree cover and aboveground carbon, potentially leading to the unintended consequence that agricultural expansion could be encouraged in biomes outside tropical rainforest, which also support important biodiversity. We examine locations suitable for zero-deforestation expansion of commercial oil palm, which is increasingly expanding outside the tropical rainforest biome, by generating empirical models of global suitability for rainfed and irrigated oil palm. We find that tropical grassy and dry forest biomes contain >50% of the total area of land climatically suitable for rainfed oil palm expansion in compliance with ZDCs (following the High Carbon Stock Approach; in locations outside urban areas and cropland), and that irrigation could double the area suitable for expansion in these biomes. Within these biomes, ZDCs fail to protect areas of high vertebrate richness from oil palm expansion. To prevent unintended consequences of ZDCs and minimize the environmental impacts of oil palm expansion, policies and governance for sustainable development and conservation must expand focus from rainforests to all tropical biomes.


Assuntos
Arecaceae , Conservação dos Recursos Naturais , Óleo de Palmeira , Poaceae , Florestas , Biodiversidade , Carbono
3.
Insect Conserv Divers ; 16(2): 173-189, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38505358

RESUMO

Entomology is key to understanding terrestrial and freshwater ecosystems at a time of unprecedented anthropogenic environmental change and offers substantial untapped potential to benefit humanity in a variety of ways, from improving agricultural practices to managing vector-borne diseases and inspiring technological advances.We identified high priority challenges for entomology using an inclusive, open, and democratic four-stage prioritisation approach, conducted among the membership and affiliates (hereafter 'members') of the UK-based Royal Entomological Society (RES).A list of 710 challenges was gathered from 189 RES members. Thematic analysis was used to group suggestions, followed by an online vote to determine initial priorities, which were subsequently ranked during an online workshop involving 37 participants.The outcome was a set of 61 priority challenges within four groupings of related themes: (i) 'Fundamental Research' (themes: Taxonomy, 'Blue Skies' [defined as research ideas without immediate practical application], Methods and Techniques); (ii) 'Anthropogenic Impacts and Conservation' (themes: Anthropogenic Impacts, Conservation Options); (iii) 'Uses, Ecosystem Services and Disservices' (themes: Ecosystem Benefits, Technology and Resources [use of insects as a resource, or as inspiration], Pests); (iv) 'Collaboration, Engagement and Training' (themes: Knowledge Access, Training and Collaboration, Societal Engagement).Priority challenges encompass research questions, funding objectives, new technologies, and priorities for outreach and engagement. Examples include training taxonomists, establishing a global network of insect monitoring sites, understanding the extent of insect declines, exploring roles of cultivated insects in food supply chains, and connecting professional with amateur entomologists. Responses to different challenges could be led by amateur and professional entomologists, at all career stages.Overall, the challenges provide a diverse array of options to inspire and initiate entomological activities and reveal the potential of entomology to contribute to addressing global challenges related to human health and well-being, and environmental change.

4.
Integr Environ Assess Manag ; 18(5): 1135-1147, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34951104

RESUMO

Conventional ecological risk assessment (ERA) predominately evaluates the impact of individual chemical stressors on a limited range of taxa, which are assumed to act as proxies to predict impacts on freshwater ecosystem function. However, it is recognized that this approach has limited ecological relevance. We reviewed the published literature to identify measures that are potential functional indicators of down-the-drain chemical stress, as an approach to building more ecological relevance into ERA. We found wide variation in the use of the term "ecosystem function," and concluded it is important to distinguish between measures of processes and measures of the capacity for processes (i.e., species' functional traits). Here, we present a classification of potential functional indicators and suggest that including indicators more directly connected with processes will improve the detection of impacts on ecosystem functioning. The rate of leaf litter breakdown, oxygen production, carbon dioxide consumption, and biomass production have great potential to be used as functional indicators. However, the limited supporting evidence means that further study is needed before these measures can be fully implemented and interpreted within an ERA and regulatory context. Sensitivity to chemical stress is likely to vary among functional indicators depending on the stressor and ecosystem context. Therefore, we recommend that ERA incorporates a variety of indicators relevant to each aspect of the function of interest, such as a direct measure of a process (e.g., rate of leaf litter breakdown) and a capacity for a process (e.g., functional composition of macroinvertebrates), alongside structural indicators (e.g., taxonomic diversity of macroinvertebrates). Overall, we believe that the consideration of functional indicators can add value to ERA by providing greater ecological relevance, particularly in relation to indirect effects, functional compensation (Box 1), interactions of multiple stressors, and the importance of ecosystem context. Environ Assess Manag 2022;18:1135-1147. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Ecossistema , Monitoramento Ambiental , Ecotoxicologia , Água Doce , Medição de Risco
5.
Bioscience ; 71(10): 1079-1090, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34616238

RESUMO

A growing number of companies have announced zero-deforestation commitments (ZDCs) to eliminate commodities produced at the expense of forests from their supply chains. Translating these aspirational goals into forest conservation requires forest mapping and monitoring (M&M) systems that are technically adequate and therefore credible, salient so that they address the needs of decision makers, legitimate in that they are fair and unbiased, and scalable over space and time. We identify 12 attributes of M&M that contribute to these goals and assess how two prominent ZDC programs, the Amazon Soy Moratorium and the High Carbon Stock Approach, integrate these attributes into their M&M systems. These programs prioritize different attributes, highlighting fundamental trade-offs in M&M design. Rather than prescribe a one-size-fits-all solution, we provide policymakers and practitioners with guidance on the design of ZDC M&M systems that fit their specific use case and that may contribute to more effective implementation of ZDCs.

6.
Reg Environ Change ; 21(1): 1, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33362432

RESUMO

The Indonesian government committed to restoring over 2 million ha of degraded peatland by the end of 2020, mainly to reduce peat fires and greenhouse gas emissions. Although it is unlikely the government will meet this target, restoration projects are still underway. One restoration strategy involves blocking peatland drainage canals, but the consequences of this for smallholder farmers whose livelihoods are dependent on agriculture are unclear. This paper investigates perceived impacts of canal blocks on smallholder farmers and identifies factors that affect their willingness to accept canal blocks on their land. We use data from 181 household questionnaires collected in 2018 across three villages in Jambi province, Sumatra. We found that the majority of respondents would accept canal blocks on their farms, perceiving that the blocks would have no impact on yields or farm access, and would decrease fire risk. Respondents who would not accept blocks on their farms were more likely to use canals to access their farms and perceive that canal blocks would decrease yields. The majority of farmers unwilling to accept canal blocks did not change their mind when provided with an option of a block that would allow boat travel. Our results improve understanding of why some smallholders may be unwilling to engage with peatland restoration. Further research is needed to understand the impact of canal blocks on smallholders' yields. Engaging with stakeholders from the outset to understand farmers' concerns, and perceptions is key if the government is to succeed in meeting its peatland restoration target and to ensure that the costs and benefits of restoration are evenly shared between local stakeholders and other actors. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10113-020-01737-z.

7.
PeerJ ; 8: e10352, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240660

RESUMO

Populations undergoing rapid climate-driven range expansion experience distinct selection regimes dominated both by increased dispersal at the leading edges and steep environmental gradients. Characterisation of traits associated with such expansions provides insight into the selection pressures and evolutionary constraints that shape demographic and evolutionary responses. Here we investigate patterns in three components of wing morphology (size, shape, colour) often linked to dispersal ability and thermoregulation, along latitudinal gradients of range expansion in the Speckled Wood butterfly (Pararge aegeria) in Britain (two regions of expansion in England and Scotland). We measured 774 males from 54 sites spanning 799 km with a 10-year mean average temperature gradient of 4 °C. A geometric morphometric method was used to investigate variation in size and shape of forewings and hindwings; colour, pattern, and contrast of the wings were examined using a measure of lightness (inverse degree of melanism). Overall, wing size increased with latitude by ∼2% per 100 km, consistent with Bergmann's rule. Forewings became more rounded and hindwings more elongated with history of colonisation, possibly reflecting selection for increased dispersal ability. Contrary to thermal melanism expectations, wing colour was lighter where larvae developed at cooler temperatures and unrelated to long-term temperature. Changes in wing spot pattern were also detected. High heterogeneity in variance among sites for all of the traits studied may reflect evolutionary time-lags and genetic drift due to colonisation of new habitats. Our study suggests that temperature-sensitive plastic responses for size and colour interact with selection for dispersal traits (wing size and shape). Whilst the plastic and evolutionary responses may in some cases act antagonistically, the rapid expansion of P. aegeria implies an overall reinforcing effect between these two mechanisms.

8.
Ecol Evol ; 10(20): 11155-11168, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33144956

RESUMO

AIM: Climatic changes throughout the Pleistocene have strongly modified species distributions. We examine how these range shifts have affected the genetic diversity of a montane butterfly species and whether the genetic diversity in the extant populations is threatened by future climate change. LOCATION: Europe. TAXON: Erebia epiphron Lepidoptera: Nymphalidae. METHODS: We analyzed mtDNA to map current genetic diversity and differentiation of E. epiphron across Europe to identify population refugia and postglacial range shifts. We used species distribution modeling (SDM) to hindcast distributions over the last 21,000 years to identify source locations of extant populations and to project distributions into the future (2070) to predict potential losses in genetic diversity. RESULTS: We found substantial genetic diversity unique to specific regions within Europe (total number of haplotypes = 31, number of unique haplotypes = 27, H d = 0.9). Genetic data and SDM hindcasting suggest long-term separation and survival of discrete populations. Particularly, high rates of unique diversity in postglacially colonized sites in England (H d = 0.64) suggest this population was colonized from a now extinct cryptic refugium. Under future climate change, SDMs predict loss of climate suitability for E. epiphron, particularly at lower elevations (<1,000 meters above sea level) equating to 1 to 12 unique haplotypes being at risk under climate scenarios projecting 1°C and 2-3°C increases respectfully in global temperature by 2070. MAIN CONCLUSIONS: Our results suggest that historical range expansion and retraction processes by a cold-adapted mountain species caused diversification between populations, resulting in unique genetic diversity which may be at risk if distributions of cold-adapted species shrink in future. Assisted colonizations of individuals from at-risk populations into climatically suitable unoccupied habitat might help conserve unique genetic diversity, and translocations into remaining populations might increase their genetic diversity and hence their ability to adapt to future climate change.

9.
Ecol Evol ; 10(15): 8394-8404, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32788988

RESUMO

Trends in insect abundance are well established in some datasets, but far less is known about how abundance measures translate into biomass trends. Moths (Lepidoptera) provide particularly good opportunities to study trends and drivers of biomass change at large spatial and temporal scales, given the existence of long-term abundance datasets. However, data on the body masses of moths are required for these analyses, but such data do not currently exist.To address this data gap, we collected empirical data in 2018 on the forewing length and dry mass of field-sampled moths, and used these to train and test a statistical model that predicts the body mass of moth species from their forewing lengths (with refined parameters for Crambidae, Erebidae, Geometridae and Noctuidae).Modeled biomass was positively correlated, with high explanatory power, with measured biomass of moth species (R 2 = 0.886 ± 0.0006, across 10,000 bootstrapped replicates) and of mixed-species samples of moths (R 2 = 0.873 ± 0.0003), showing that it is possible to predict biomass to an informative level of accuracy, and prediction error was smaller with larger sample sizes.Our model allows biomass to be estimated for historical moth abundance datasets, and so our approach will create opportunities to investigate trends and drivers of insect biomass change over long timescales and broad geographic regions.

10.
Conserv Biol ; 34(4): 934-942, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31840279

RESUMO

Conservation planning tends to focus on protecting species' ranges or landscape connectivity but seldom both-particularly in the case of diverse taxonomic assemblages and multiple planning goals. Therefore, information on potential trade-offs between maintaining landscape connectivity and achieving other conservation objectives is lacking. We developed an optimization approach to prioritize the maximal protection of species' ranges, ecosystem types, and forest carbon stocks, while also including habitat connectivity for range-shifting species and dispersal corridors to link protected area. We applied our approach to Sabah, Malaysia, where the state government mandated an increase in protected-area coverage of approximately 305,000 ha but did not specify where new protected areas should be. Compared with a conservation planning approach that did not incorporate the 2 connectivity features, our approach increased the protection of dispersal corridors and elevational connectivity by 13% and 21%, respectively. Coverage of vertebrate and plant species' ranges and forest types were the same whether connectivity was included or excluded. Our approach protected 2% less forest carbon and 3% less butterfly range than when connectivity features were not included. Hence, the inclusion of connectivity into conservation planning can generate large increases in the protection of landscape connectivity with minimal loss of representation of other conservation targets.


Incorporación de la Conectividad a la Planeación de la Conservación para la Representación Óptima de Especies Múltiples y Servicios Ambientales Resumen Las tendencias de planeación de la conservación tienden a enfocarse en la protección de la distribución geográfica de las especies o en la conectividad de paisajes, pero rara vez se enfocan en ambas - particularmente para el caso de los ensamblajes taxonómicos y las metas múltiples de planeación. Por lo tanto, hay carencias en la información sobre las compensaciones potenciales entre mantener la conectividad de los paisajes y alcanzar otros objetivos de conservación. Desarrollamos una estrategia de optimización para priorizar la protección máxima de la distribución de las especies, los tipos de ecosistemas y los stocks de carbono de los bosques, a la vez que incluimos la conectividad del hábitat para las especies que modifican su distribución y los corredores de dispersión para conectar el área protegida. Aplicamos nuestra estrategia en Sabah, Malasia, en donde el gobierno estatal ordenó un incremento de ∼305, 000 ha en la cobertura de áreas protegidas sin especificar la ubicación de las nuevas áreas protegidas. En comparación con una estrategia de planeación de la conservación que no incorporó las dos características de la conectividad, nuestra estrategia incrementó la protección de los corredores de dispersión y la conectividad altitudinal en un 13% y 21% respectivamente. La cobertura de la distribución de las especies de plantas y vertebrados y de los tipos de bosque fue la misma con o sin la inclusión de la conectividad. Nuestra estrategia protegió 2% menos del carbono forestal y 3% menos de la distribución de mariposas que cuando no se incluyeron las características de conectividad en la estrategia. Por lo tanto, incluir a la conectividad en la planeación de la conservación puede generar grandes incrementos en la protección de la conectividad del paisaje con una pérdida mínima de representación para los demás objetivos de conservación.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Biodiversidade , Florestas , Malásia , Vertebrados
11.
J Appl Ecol ; 56(10): 2274-2285, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31762491

RESUMO

Habitat connectivity is important for tropical biodiversity conservation. Expansion of commodity crops, such as oil palm, fragments natural habitat areas, and strategies are needed to improve habitat connectivity in agricultural landscapes. The Roundtable on Sustainable Palm Oil (RSPO) voluntary certification system requires that growers identify and conserve forest patches identified as High Conservation Value Areas (HCVAs) before oil palm plantations can be certified as sustainable. We assessed the potential benefits of these conservation set-asides for forest connectivity.We mapped HCVAs and quantified their forest cover in 2015. To assess their contribution to forest connectivity, we modelled range expansion of forest-dependent populations with five dispersal abilities spanning those representative of poor dispersers (e.g. flightless insects) to more mobile species (e.g. large birds or bats) across 70 plantation landscapes in Borneo.Because only 21% of HCVA area was forested in 2015, these conservation set-asides currently provide few connectivity benefits. Compared to a scenario where HCVAs contain no forest (i.e. a no-RSPO scenario), current HCVAs improved connectivity by ~3% across all dispersal abilities. However, if HCVAs were fully reforested, then overall landscape connectivity could improve by ~16%. Reforestation of HCVAs had the greatest benefit for poor to intermediate dispersers (0.5-3 km per generation), generating landscapes that were up to 2.7 times better connected than landscapes without HCVAs. By contrast, connectivity benefits of HCVAs were low for highly mobile populations under current and reforestation scenarios, because range expansion of these populations was generally successful regardless of the amount of forest cover. Synthesis and applications. The Roundtable on Sustainable Palm Oil (RSPO) requires that High Conservation Value Areas (HCVAs) be set aside to conserve biodiversity, but HCVAs currently provide few connectivity benefits because they contain relatively little forest. However, reforested HCVAs have the potential to improve landscape connectivity for some forest species (e.g. winged insects), and we recommend active management by plantation companies to improve forest quality of degraded HCVAs (e.g. by enrichment planting). Future revisions to the RSPO's Principles and Criteria should also ensure that large (i.e. with a core area >2 km2) HCVAs are reconnected to continuous tracts of forest to maximize their connectivity benefits.

12.
Sci Rep ; 9(1): 15039, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31636341

RESUMO

Range shifting is vital for species persistence, but there is little consensus on why individual species vary so greatly in the rates at which their ranges have shifted in response to recent climate warming. Here, using 40 years of distribution data for 291 species from 13 invertebrate taxa in Britain, we show that interactions between habitat availability and exposure to climate change at the range margins explain up to half of the variation in rates of range shift. Habitat generalists expanded faster than more specialised species, but this intrinsic trait explains less of the variation in range shifts than habitat availability, which additionally depends on extrinsic factors that may be rare or widespread at the range margin. Similarly, while climate change likely underlies polewards expansions, we find that more of the between-species variation is explained by differences in habitat availability than by changes in climatic suitability. A model that includes both habitat and climate, and their statistical interaction, explains the most variation in range shifts. We conclude that climate-change vulnerability assessments should focus as much on future habitat availability as on climate sensitivity and exposure, with the expectation that habitat restoration and protection will substantially improve species' abilities to respond to uncertain future climates.


Assuntos
Classificação , Mudança Climática , Ecossistema , Animais , Especificidade da Espécie , Reino Unido
13.
Nat Commun ; 10(1): 4455, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31649267

RESUMO

Advances in phenology (the annual timing of species' life-cycles) in response to climate change are generally viewed as bioindicators of climate change, but have not been considered as predictors of range expansions. Here, we show that phenology advances combine with the number of reproductive cycles per year (voltinism) to shape abundance and distribution trends in 130 species of British Lepidoptera, in response to ~0.5 °C spring-temperature warming between 1995 and 2014. Early adult emergence in warm years resulted in increased within- and between-year population growth for species with multiple reproductive cycles per year (n = 39 multivoltine species). By contrast, early emergence had neutral or negative consequences for species with a single annual reproductive cycle (n = 91 univoltine species), depending on habitat specialisation. We conclude that phenology advances facilitate polewards range expansions in species exhibiting plasticity for both phenology and voltinism, but may inhibit expansion by less flexible species.

14.
Nat Commun ; 10(1): 4612, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601806

RESUMO

Both community composition changes due to species redistribution and within-species size shifts may alter body-size structures under climate warming. Here we assess the relative contribution of these processes in community-level body-size changes in tropical moth assemblages that moved uphill during a period of warming. Based on resurvey data for seven assemblages of geometrid moths (>8000 individuals) on Mt. Kinabalu, Borneo, in 1965 and 2007, we show significant wing-length reduction (mean shrinkage of 1.3% per species). Range shifts explain most size restructuring, due to uphill shifts of relatively small species, especially at high elevations. Overall, mean forewing length shrank by ca. 5%, much of which is accounted for by species range boundary shifts (3.9%), followed by within-boundary distribution changes (0.5%), and within-species size shrinkage (0.6%). We conclude that the effects of range shifting predominate, but considering species physiological responses is also important for understanding community size reorganization under climate warming.


Assuntos
Tamanho Corporal/fisiologia , Mariposas/fisiologia , Altitude , Animais , Bornéu , Mudança Climática , Malásia , Mariposas/anatomia & histologia
15.
Glob Chang Biol ; 24(3): 1267-1278, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29052295

RESUMO

Tropical rainforests are subject to extensive degradation by commercial selective logging. Despite pervasive changes to forest structure, selectively logged forests represent vital refugia for global biodiversity. The ability of these forests to buffer temperature-sensitive species from climate warming will be an important determinant of their future conservation value, although this topic remains largely unexplored. Thermal buffering potential is broadly determined by: (i) the difference between the "macroclimate" (climate at a local scale, m to ha) and the "microclimate" (climate at a fine-scale, mm to m, that is distinct from the macroclimate); (ii) thermal stability of microclimates (e.g. variation in daily temperatures); and (iii) the availability of microclimates to organisms. We compared these metrics in undisturbed primary forest and intensively logged forest on Borneo, using thermal images to capture cool microclimates on the surface of the forest floor, and information from dataloggers placed inside deadwood, tree holes and leaf litter. Although major differences in forest structure remained 9-12 years after repeated selective logging, we found that logging activity had very little effect on thermal buffering, in terms of macroclimate and microclimate temperatures, and the overall availability of microclimates. For 1°C warming in the macroclimate, temperature inside deadwood, tree holes and leaf litter warmed slightly more in primary forest than in logged forest, but the effect amounted to <0.1°C difference between forest types. We therefore conclude that selectively logged forests are similar to primary forests in their potential for thermal buffering, and subsequent ability to retain temperature-sensitive species under climate change. Selectively logged forests can play a crucial role in the long-term maintenance of global biodiversity.


Assuntos
Agricultura Florestal , Microclima , Floresta Úmida , Clima Tropical , Biodiversidade , Bornéu , Árvores
16.
Ecol Evol ; 7(19): 7897-7908, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29043043

RESUMO

Temperature is a core component of a species' fundamental niche. At the fine scale over which most organisms experience climate (mm to ha), temperature depends upon the amount of radiation reaching the Earth's surface, which is principally governed by vegetation. Tropical regions have undergone widespread and extreme changes to vegetation, particularly through the degradation and conversion of rainforests. As most terrestrial biodiversity is in the tropics, and many of these species possess narrow thermal limits, it is important to identify local thermal impacts of rainforest degradation and conversion. We collected pantropical, site-level (<1 ha) temperature data from the literature to quantify impacts of land-use change on local temperatures, and to examine whether this relationship differed aboveground relative to belowground and between wet and dry seasons. We found that local temperature in our sample sites was higher than primary forest in all human-impacted land-use types (N = 113,894 daytime temperature measurements from 25 studies). Warming was pronounced following conversion of forest to agricultural land (minimum +1.6°C, maximum +13.6°C), but minimal and nonsignificant when compared to forest degradation (e.g., by selective logging; minimum +1°C, maximum +1.1°C). The effect was buffered belowground (minimum buffering 0°C, maximum buffering 11.4°C), whereas seasonality had minimal impact (maximum buffering 1.9°C). We conclude that forest-dependent species that persist following conversion of rainforest have experienced substantial local warming. Deforestation pushes these species closer to their thermal limits, making it more likely that compounding effects of future perturbations, such as severe droughts and global warming, will exceed species' tolerances. By contrast, degraded forests and belowground habitats may provide important refugia for thermally restricted species in landscapes dominated by agricultural land.

17.
Agric Syst ; 156: 76-84, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28867871

RESUMO

Global warming is predicted to increase in the future, with detrimental consequences for rainfed crops that are dependent on natural rainfall (i.e. non-irrigated). Given that many crops grown under rainfed conditions support the livelihoods of low-income farmers, it is important to highlight the vulnerability of rainfed areas to climate change in order to anticipate potential risks to food security. In this paper, we focus on India, where ~ 50% of rice is grown under rainfed conditions, and we employ statistical models (climate envelope models (CEMs) and boosted regression trees (BRTs)) to map changes in climate suitability for rainfed rice cultivation at a regional level (~ 18 × 18 km cell resolution) under projected future (2050) climate change (IPCC RCPs 2.6 and 8.5, using three GCMs: BCC-CSM1.1, MIROC-ESM-CHEM, and HadGEM2-ES). We quantify the occurrence of rice (whether or not rainfed rice is commonly grown, using CEMs) and rice extent (area under cultivation, using BRTs) during the summer monsoon in relation to four climate variables that affect rice growth and yield namely ratio of precipitation to evapotranspiration (PER), maximum and minimum temperatures (Tmax and Tmin ), and total rainfall during harvesting. Our models described the occurrence and extent of rice very well (CEMs for occurrence, ensemble AUC = 0.92; BRTs for extent, Pearson's r = 0.87). PER was the most important predictor of rainfed rice occurrence, and it was positively related to rainfed rice area, but all four climate variables were important for determining the extent of rice cultivation. Our models project that 15%-40% of current rainfed rice growing areas will be at risk (i.e. decline in climate suitability or become completely unsuitable). However, our models project considerable variation across India in the impact of future climate change: eastern and northern India are the locations most at risk, but parts of central and western India may benefit from increased precipitation. Hence our CEM and BRT models agree on the locations most at risk, but there is less consensus about the degree of risk at these locations. Our results help to identify locations where livelihoods of low-income farmers and regional food security may be threatened in the next few decades by climate changes. The use of more drought-resilient rice varieties and better irrigation infrastructure in these regions may help to reduce these impacts and reduce the vulnerability of farmers dependent on rainfed cropping.

18.
Philos Trans R Soc Lond B Biol Sci ; 372(1723)2017 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28483874

RESUMO

Extreme climatic events could be major drivers of biodiversity change, but it is unclear whether extreme biological changes are (i) individualistic (species- or group-specific), (ii) commonly associated with unusual climatic events and/or (iii) important determinants of long-term population trends. Using population time series for 238 widespread species (207 Lepidoptera and 31 birds) in England since 1968, we found that population 'crashes' (outliers in terms of species' year-to-year population changes) were 46% more frequent than population 'explosions'. (i) Every year, at least three species experienced extreme changes in population size, and in 41 of the 44 years considered, some species experienced population crashes while others simultaneously experienced population explosions. This suggests that, even within the same broad taxonomic groups, species are exhibiting individualistic dynamics, most probably driven by their responses to different, short-term events associated with climatic variability. (ii) Six out of 44 years showed a significant excess of species experiencing extreme population changes (5 years for Lepidoptera, 1 for birds). These 'consensus years' were associated with climatically extreme years, consistent with a link between extreme population responses and climatic variability, although not all climatically extreme years generated excess numbers of extreme population responses. (iii) Links between extreme population changes and long-term population trends were absent in Lepidoptera and modest (but significant) in birds. We conclude that extreme biological responses are individualistic, in the sense that the extreme population changes of most species are taking place in different years, and that long-term trends of widespread species have not, to date, been dominated by these extreme changes.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'.


Assuntos
Biodiversidade , Aves/fisiologia , Mudança Climática , Lepidópteros/fisiologia , Animais , Clima , Inglaterra , Dinâmica Populacional
20.
Ecol Evol ; 6(1): 181-90, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26811783

RESUMO

Dispersal plays a crucial role in many aspects of species' life histories, yet is often difficult to measure directly. This is particularly true for many insects, especially nocturnal species (e.g. moths) that cannot be easily observed under natural field conditions. Consequently, over the past five decades, laboratory tethered flight techniques have been developed as a means of measuring insect flight duration and speed. However, these previous designs have tended to focus on single species (typically migrant pests), and here we describe an improved apparatus that allows the study of flight ability in a wide range of insect body sizes and types. Obtaining dispersal information from a range of species is crucial for understanding insect population dynamics and range shifts. Our new laboratory tethered flight apparatus automatically records flight duration, speed, and distance of individual insects. The rotational tethered flight mill has very low friction and the arm to which flying insects are attached is extremely lightweight while remaining rigid and strong, permitting both small and large insects to be studied. The apparatus is compact and thus allows many individuals to be studied simultaneously under controlled laboratory conditions. We demonstrate the performance of the apparatus by using the mills to assess the flight capability of 24 species of British noctuid moths, ranging in size from 12-27 mm forewing length (~40-660 mg body mass). We validate the new technique by comparing our tethered flight data with existing information on dispersal ability of noctuids from the published literature and expert opinion. Values for tethered flight variables were in agreement with existing knowledge of dispersal ability in these species, supporting the use of this method to quantify dispersal in insects. Importantly, this new technology opens up the potential to investigate genetic and environmental factors affecting insect dispersal among a wide range of species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...