Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460166

RESUMO

Historically, bacteria of the phylum, Actinobacteria have been a very prominent source of bioactive compounds for drug discovery. Among the actinobacterial genera, Micrococcus has not generally been prioritized in the search for novel drugs. The bacteria in this genus are known to have very small genomes (generally < 3 Mb). Actinobacteria with small genomes seldom contain the well-characterized biosynthetic gene clusters such as those encoding polyketide synthases and nonribosomal peptide synthetases that current genome mining algorithms are optimized to detect. Nevertheless, there are many reports of substantial pharmaceutically relevant bioactivity of Micrococcus extracts. On the other hand, there are remarkably few descriptions of fully characterized and structurally elucidated bioactive compounds from Micrococcus spp. This review provides a comprehensive summary of the bioactivity of Micrococcus spp. that encompasses antibacterial, antifungal, cytotoxic, antioxidant, and anti-inflammatory activities. This review uncovers the considerable biosynthetic potential of this genus and highlights the need for a re-examination of these bioactive strains, with a particular emphasis on marine isolates, because of their potent bioactivity and high potential for encoding unique molecular scaffolds.


Assuntos
Actinobacteria , Micrococcus , Actinobacteria/genética , Bactérias , Antibacterianos/farmacologia , Policetídeo Sintases/genética , Descoberta de Drogas
2.
Mar Life Sci Technol ; 5(1): 12-27, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37077290

RESUMO

The Permian Basin is a unique ecosystem located in the southwest of the USA. An unanswered question is whether the bacteria in the Permian Basin adapted to the changing paleomarine environment and survived in the remnants of Permian groundwater. In our previous study, a novel bacterial strain, Permianibacter aggregans HW001T, was isolated from microalgae cultures incubated with Permian Basin waters, and was shown to originate from the Permian Ocean. In this study, strain HW001T was shown to be the representative strain of a novel family, classified as 'Permianibacteraceae'. The results of molecular dating suggested that the strain HW001T diverged ~ 447 million years ago (mya), which is the early Permian period (~ 250 mya). Genome analysis was used to access its potential energy utilization and biosynthesis capacity. A large number of transporters, carbohydrate-active enzymes and protein-degradation related genes have been annotated in the genome of strain HW001T. In addition, a series of important metabolic pathways, such as peptidoglycan biosynthesis, osmotic stress response system and multifunctional quorum sensing were annotated, which may confer the ability to adapt to various unfavorable environmental conditions. Finally, the evolutionary history of strain HW001T was reconstructed and the horizontal transfer of genes was predicted, indicating that the adaptation of P. aggregans to a changing marine environment depends on the evolution of their metabolic capabilities, especially in signal transmission. In conclusion, the results of this study provide genomic information for revealing the adaptive mechanism of strain HW001T to the changing ancient oceans. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-023-00164-3.

3.
Curr Opin Biotechnol ; 73: 300-307, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34619482

RESUMO

Optimization of microalgal growth and high-value metabolite production are key steps in microalgal mass culture for the algae industry. An emerging technology is the use of phytohormones, like indole-3-acetic acid (IAA), to promote microalgal growth. This requires an understanding of the biosynthesis of IAA in microalgae-bacteria associations and its function in regulating algal physiology and metabolite production. We review the current advances in understanding of microalgal and bacterial auxin biosynthesis and their implications for algal biotechnology.


Assuntos
Microalgas , Bactérias/metabolismo , Biomassa , Biotecnologia , Ácidos Indolacéticos/metabolismo , Microalgas/metabolismo , Reguladores de Crescimento de Plantas
5.
Appl Environ Microbiol ; 86(3)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31757820

RESUMO

Alteromonas is a widely distributed genus of marine Gammaproteobacteria, with representatives shown to be key players in diverse processes, including biogeochemical cycling and biofouling of marine substrata. While Alteromonas spp. are early colonizers of copper-based antifouling paints on marine vessels, their mechanism of tolerance is poorly understood. PacBio whole-genome sequencing of Alteromonas macleodii strains CUKW and KCC02, isolated from Cu/Ni alloy test coupons submerged in oligotrophic coastal waters, indicated the presence of multiple megaplasmids (ca. 200 kb) in both. A pulsed-field gel electrophoresis method was developed and used to confirm the presence of multiple megaplasmids in these two strains; it was then used to screen additional Alteromonas strains for which little to no sequencing data exist. Plasmids were not detected in any of the other strains. Bioinformatic analysis of the CUKW and KCC02 plasmids identified numerous genes associated with metal resistance. Copper resistance orthologs from both the Escherichia coli Cue and Cus and Pseudomonas syringae Cop systems were present, at times as multiple copies. Metal growth assays in the presence of copper, cobalt, manganese, and zinc performed with 10 Alteromonas strains demonstrated the ability of CUKW and KCC02 to grow at metal concentrations inhibitory to all the other strains tested. This study reports multiple megaplasmids in Alteromonas strains. Bioinformatic analysis of the CUKW and KCC02 plasmids indicate that they harbor elements of the Tra system conjugation apparatus, although their type of mobility remains to be experimentally verified.IMPORTANCE Copper is commonly used as an antifouling agent on ship hulls. Alteromonas spp. are early colonizers of copper-based antifouling paint, but their mechanism of tolerance is poorly understood. Sequencing of A. macleodii strains isolated from copper test materials for marine ships indicated the presence of multiple megaplasmids. Plasmids serve as key vectors in horizontal gene transfer and confer traits such as metal resistance, detoxification, ecological interaction, and antibiotic resistance. Bioinformatic analysis identified many metal resistance genes and genes associated with mobility. Understanding the molecular mechanisms and capacity for gene transfer within marine biofilms provides a platform for the development of novel antifouling solutions targeting genes involved in copper tolerance and biofilm formation.


Assuntos
Alteromonas/genética , Tolerância a Medicamentos , Eletroforese em Gel de Campo Pulsado/métodos , Metais/efeitos adversos , Plasmídeos/fisiologia , Alteromonas/efeitos dos fármacos , Sequenciamento Completo do Genoma
6.
FEMS Microbiol Ecol ; 95(11)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31589314

RESUMO

Efficient nutrient cycles mediated by symbiotic microorganisms with their hosts are vital to support the high productivity of coral reef ecosystems. In these ecosystems, marine sponges are important habitat-forming organisms in the benthic community and harbor abundant microbial symbionts. However, few studies have reviewed the critical microbially mediated nutrient cycling processes in marine sponges. To bridge this gap, in this review article, we summarize existing knowledge and recent advances in understanding microbially mediated carbon (C), nitrogen (N), phosphorus (P) and sulfur (S) cycles in sponges, propose a conceptual model that describes potential interactions and constraints in the major nutrient cycles, and suggest that shifting redox state induced by animal behavior like sponge pumping can exert great influence on the activities of symbiotic microbial communities. Constraints include the lack of knowledge on spatial and temporal variations and host behavior; more studies are needed in these areas. Sponge microbiomes may have a significant impact on the nutrient cycles in the world's coral reef ecosystems.


Assuntos
Recifes de Corais , Poríferos/metabolismo , Poríferos/microbiologia , Animais , Carbono/metabolismo , Microbiota , Nitrogênio/metabolismo , Nutrientes/metabolismo , Fósforo/metabolismo , Enxofre/metabolismo , Simbiose , Microbiologia da Água
7.
Microbiol Resour Announc ; 8(34)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31439704

RESUMO

Marine actinomycetes (order Actinomycetales) are of interest as a promising source of pharmaceuticals. The genomes of three novel sponge-associated actinomycetes exhibiting antimycobacterial activity, Brevibacterium sp. strain XM4083, Micrococcus sp. strain R8502A1, and Micromonospora sp. strain XM-20-01, were sequenced in an effort to identify compounds responsible for growth-inhibiting activity.

8.
Science ; 364(6445)2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31196985

RESUMO

Chemical defense against predators is widespread in natural ecosystems. Occasionally, taxonomically distant organisms share the same defense chemical. Here, we describe an unusual tripartite marine symbiosis, in which an intracellular bacterial symbiont ("Candidatus Endobryopsis kahalalidefaciens") uses a diverse array of biosynthetic enzymes to convert simple substrates into a library of complex molecules (the kahalalides) for chemical defense of the host, the alga Bryopsis sp., against predation. The kahalalides are subsequently hijacked by a third partner, the herbivorous mollusk Elysia rufescens, and employed similarly for defense. "Ca E. kahalalidefaciens" has lost many essential traits for free living and acts as a factory for kahalalide production. This interaction between a bacterium, an alga, and an animal highlights the importance of chemical defense in the evolution of complex symbioses.


Assuntos
Clorófitas , Flavobacteriaceae/metabolismo , Gastrópodes , Glicosídeos/metabolismo , Comportamento Predatório , Simbiose , Triterpenos/metabolismo , Animais , Evolução Biológica , Flavobacteriaceae/química
9.
Crit Rev Biotechnol ; 39(1): 79-98, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30198342

RESUMO

Today, environmental pollution is a serious problem, and bioremediation can play an important role in cleaning contaminated sites. Remediation strategies, such as chemical and physical approaches, are not enough to mitigate pollution problems because of the continuous generation of novel recalcitrant pollutants due to anthropogenic activities. Bioremediation using microbes is an eco-friendly and socially acceptable alternative to conventional remediation approaches. Many microbes with a bioremediation potential have been isolated and characterized but, in many cases, cannot completely degrade the targeted pollutant or are ineffective in situations with mixed wastes. This review envisages advances in systems biology (SB), which enables the analysis of microbial behavior at a community level under different environmental stresses. By applying a SB approach, crucial preliminary information can be obtained for metabolic engineering (ME) of microbes for their enhanced bioremediation capabilities. This review also highlights the integrated SB and ME tools and techniques for bioremediation purposes.


Assuntos
Biodegradação Ambiental , Engenharia Metabólica/métodos , Microbiota/fisiologia , Biologia de Sistemas , Biotecnologia , Sistemas CRISPR-Cas , Biologia Computacional , Poluentes Ambientais , Poluição Ambiental , Edição de Genes/métodos , Regulação da Expressão Gênica , Genômica , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Microbiota/genética , Família Multigênica , Transcriptoma
10.
Microorganisms ; 8(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31905988

RESUMO

Some sponges have been shown to accumulate abundant phosphorus in the form of polyphosphate (polyP) granules even in waters where phosphorus is present at low concentrations. But the polyP accumulation occurring in sponges and their symbiotic bacteria have been little studied. The amounts of polyP exhibited significant differences in twelve sponges from marine environments with high or low dissolved inorganic phosphorus (DIP) concentrations which were quantified by spectral analysis, even though in the same sponge genus, e.g., Mycale sp. or Callyspongia sp. PolyP enrichment rates of sponges in oligotrophic environments were far higher than those in eutrophic environments. Massive polyP granules were observed under confocal microscopy in samples from very low DIP environments. The composition of sponge symbiotic microbes was analyzed by high-throughput sequencing and the corresponding polyphosphate kinase (ppk) genes were detected. Sequence analysis revealed that in the low DIP environment, those sponges with higher polyP content and enrichment rates had relatively higher abundances of cyanobacteria. Mantel tests and canonical correspondence analysis (CCA) examined that the polyP enrichment rate was most strongly correlated with the structure of microbial communities, including genera Synechococcus, Rhodopirellula, Blastopirellula, and Rubripirellula. About 50% of ppk genes obtained from the total DNA of sponge holobionts, had above 80% amino acid sequence similarities to those sequences from Synechococcus. In general, it suggested that sponges employed differentiated strategies towards the use of phosphorus in different nutrient environments and the symbiotic Synechococcus could play a key role in accumulating polyP.

12.
Genome Announc ; 6(24)2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29903817

RESUMO

We report here the whole-genome sequencing results of two bacterial isolates, Aeromonas jandaei IMET J and Cloacibacterium normanense IMET F, that inhibit (possibly due to denitrifying gene clusters) and promote (possibly due to an ammonification system), respectively, the growth of the microalgal strains Scenedesmus HTB1 and Chlorella vulgaris 1807.

13.
Gigascience ; 6(10): 1-7, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29020741

RESUMO

Marine sponges (phylum Porifera) are a diverse, phylogenetically deep-branching clade known for forming intimate partnerships with complex communities of microorganisms. To date, 16S rRNA gene sequencing studies have largely utilised different extraction and amplification methodologies to target the microbial communities of a limited number of sponge species, severely limiting comparative analyses of sponge microbial diversity and structure. Here, we provide an extensive and standardised dataset that will facilitate sponge microbiome comparisons across large spatial, temporal, and environmental scales. Samples from marine sponges (n = 3569 specimens), seawater (n = 370), marine sediments (n = 65) and other environments (n = 29) were collected from different locations across the globe. This dataset incorporates at least 268 different sponge species, including several yet unidentified taxa. The V4 region of the 16S rRNA gene was amplified and sequenced from extracted DNA using standardised procedures. Raw sequences (total of 1.1 billion sequences) were processed and clustered with (i) a standard protocol using QIIME closed-reference picking resulting in 39 543 operational taxonomic units (OTU) at 97% sequence identity, (ii) a de novo clustering using Mothur resulting in 518 246 OTUs, and (iii) a new high-resolution Deblur protocol resulting in 83 908 unique bacterial sequences. Abundance tables, representative sequences, taxonomic classifications, and metadata are provided. This dataset represents a comprehensive resource of sponge-associated microbial communities based on 16S rRNA gene sequences that can be used to address overarching hypotheses regarding host-associated prokaryotes, including host specificity, convergent evolution, environmental drivers of microbiome structure, and the sponge-associated rare biosphere.


Assuntos
Microbiota , Poríferos/microbiologia , Animais , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
14.
Mar Drugs ; 15(7)2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28644408

RESUMO

Industrial vegetable oil production in Viet Nam depends on oil seeds and crude plant oils that are currently more than 90% imported. As the first step in investigating the feasibility of using microalgae to provide Viet Nam with a domestic source of oil for food and edible oil industries, fifty lipid-producing microalgae were isolated and characterized. The microalgae were isolated from water sources ranging from freshwater to brackish and marine waters from a wide geographic distribution in Viet Nam. Initial analyses showed that 20 of the 50 strains had good growth rates, produced high biomass and had high lipid content, ranging up to 50% of dry weight biomass. 18S rRNA gene sequence analyses of the 50 strains showed a great diversity in this assemblage of microalgae, comprising at least 38 species and representatives of 25 genera: Chlamydomonas, Poterioochromonas, Scenedesmus, Desmodesmus, Chlorella, Bracteacoccus, Monoraphidium, Selenastrum, Acutodesmus, Mychonastes, Ankistrodesmus, Kirchneriella, Raphidocelis, Dictyosphaerium, Coelastrella, Schizochlamydella, Oocystidium, Nannochloris, Auxenochlorella, Chlorosarcinopsis, Stichococcus, Picochlorum, Prasinoderma, Chlorococcum, and Marvania. Some of the species are closely related to well-known lipid producers such as Chlorella sorokiniana, but some other strains are not closely related to the strains found in public sequence databases and likely represent new species. Analysis of oil quality showed that fatty acid profiles of the microalgal strains were very diverse and strain-dependent. Fatty acids in the microalgal oils comprised saturated fatty acids (SFAs), poly-unsaturated fatty acids (PUFAs), and mono-unsaturated fatty acids (MUFAs). The main SFA was palmitic acid. MUFAs and PUFAs were dominated by oleic acid, and linoleic and linolenic acids, respectively. Some strains were especially rich in the essential fatty acid α-linolenic acid (ALA), which comprised more than 20% of the fatty acids in these strains. Other strains had fatty acid compositions similar to that of palm oil. Several strains have been selected on the basis of their suitable fatty acid profiles and high lipid content for further chemical and physical characterization, toxicity and organoleptic tests of their oils, and for scale-up.


Assuntos
Ácidos Graxos/isolamento & purificação , Lipídeos/isolamento & purificação , Microalgas/metabolismo , Óleos/isolamento & purificação , Biomassa , Ácidos Graxos/química , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/isolamento & purificação , Estudos de Viabilidade , Genes de RNAr , Lipídeos/química , Microalgas/genética , Óleos/química , RNA Ribossômico 18S/genética , Vietnã
15.
PLoS One ; 12(4): e0174816, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28419173

RESUMO

The recently described epizoic sponge-sponge symbioses between Xestospongia deweerdtae and two species of Plakortis present an unusual series of sponge interactions. Sponges from the genus Plakortis are fierce allelopathic competitors, rich in cytotoxic secondary metabolites, and yet X. deweerdtae flourishes as an epizoic encrustation on Plakortis deweerdtaephila and Plakortis symbiotica. Our objective in this study was to evaluate the hypothesis that X. deweerdtae grows epizoic to these two species of Plakortis due to a shared chemical defense against predators. We collected free-living individuals of X. deweerdtae and symbiotic pairs from a wide geographical range to generate crude organic extracts and a series of polarity fractions from sponge extract. We tested the deterrency of these extracts against three common coral reef predators: the bluehead wrasse, Thalassoma bifasciatum, the Caribbean sharpnose puffer, Canthigaster rostrata, and the white spotwrist hermit crab, Pagurus criniticornis. While the chemical defenses of P. deweerdtaephila and P. symbiotica are more potent than those of X. deweerdtae, all of the sponge species we tested significantly deterred feeding in all three generalist predators. The free-living form of X. deweerdtae is mostly defended across the region, with a few exceptions. The associated form of X. deweerdtae is always defended, and both species of Plakortis are very strongly defended, with puffers refusing to consume extract-treated pellets until the extract was diluted to 1/256× concentration. Using diode-array high performance liquid chromatography (HPLC) coupled with high-resolution mass spectrometry (LC-MS/IT-TOF), we found two secondary metabolites from P. deweerdtaephila, probably the cyclic endoperoxides plakinic acid I and plakinic acid K, in low concentrations in the associated-but not the free-living-form of X. deweerdtae, suggesting a possible translocation of defensive chemicals from the basibiont to the epibiont. Comparing the immense deterrency of Plakortis spp. extracts to the extracts of X. deweerdtae gives the impression that there may be some sharing of chemical defenses: one partner in the symbiosis is clearly more defended than the other and a small amount of its defensive chemistry may translocate to the partner. However, X. deweerdtae effectively deters predators with its own defensive chemistry. Multiple lines of evidence provide no support for the shared chemical defense hypothesis. Given the diversity of other potential food resources available to predators on coral reefs, it is improbable that the evolution of these specialized sponge-sponge symbioses has been driven by predation pressure.


Assuntos
Peixes/fisiologia , Plakortis/fisiologia , Comportamento Predatório/fisiologia , Simbiose , Xestospongia/fisiologia , Acetatos/administração & dosagem , Acetatos/análise , Acetatos/isolamento & purificação , Animais , Região do Caribe , Cromatografia Líquida de Alta Pressão , Recifes de Corais , Ecossistema , Comportamento Alimentar/fisiologia , Geografia , Espectrometria de Massas , Estrutura Molecular , Peróxidos/administração & dosagem , Peróxidos/análise , Peróxidos/isolamento & purificação , Plakortis/química , Plakortis/metabolismo , Xestospongia/química , Xestospongia/metabolismo
16.
Zootaxa ; 4178(2): 209-233, 2016 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-27811721

RESUMO

The new discovery by Vicente et al. (2014) of specialized epizoic symbioses between sponges of the genera Plakortis and Xestospongia revealed the obligate interaction of two new Plakortis spp. associating with Xestospongia deweerdtae and a new Xestospongia sp. In this study we formally describe the two new Plakortis spp. as Plakortis deweerdtaephila sp. nov. (previously reported as Plakortis sp. 1), Plakortis symbiotica sp. nov. (previously reported as Plakortis sp. 2) and describe the new Xestospongia sp. epibiont as Haliclona (Halichoclona) plakophila sp. nov.  Plakortis deweerdtaephila associates only with X. deweerdtae, and has very small to large straight diods (24.2-233.7 µm long) and triods (26.4-102.6 µm long) that form large ectosomal circular meshes (114-329 µm diameter). P. symbiotica associates with both X. deweerdtae and H. plakophila, has larger curved diods (71.9-141.8 µm long) and triods (20.4-70.6 µm long) that form smaller ectosomal circular meshes (43-121 µm diameter) than P. deweerdtaephila. Phylogenetic analysis of cox1 and cob gene fragments revealed a strongly supported clade that grouped both Plakortis spp. nov. distantly from any other known Plakortis spp. H. plakophila is described as a thin encrusting veneer of tissue with occasional papillae, so far only found associated with P. symbiotica in La Parguera, Puerto Rico. Phylogenetic analysis of 18S rRNA and cox1 gene fragments place it distantly from any known clade of Haplosclerida. We found a new associated morphotype of X. deweerdtae from Bocas del Toro Panama, which completely overgrew P. deweerdtaephila. In addition, free-living morphotypes from Panama produce larger S-shaped and round bracket shaped strongyles never before observed for this species, leading us to redescribe X. deweerdtae. All X. deweerdtae morphotypes shared >99% sequence homology of cox1, 18S rRNA and 28S rRNA genes with the holotype of X. deweerdtae. This study highlights the highly variable morphological characters of X. deweerdtae influenced by lifestyle and environmental factors. This is also the first time that an obligate symbiosis with a heterospecific sponge is used as a key taxonomic character.


Assuntos
Haliclona/classificação , Plakortis/classificação , Animais , Região do Caribe , Haliclona/anatomia & histologia , Haliclona/genética , Filogenia , Plakortis/anatomia & histologia , Plakortis/genética , Análise de Sequência de DNA , Especificidade da Espécie , Simbiose
17.
Crit Rev Biotechnol ; 36(2): 341-52, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25264573

RESUMO

Despite the great interest in microalgae as a potential source of biofuel to substitute for fossil fuels, little information is available on the effects of bacterial symbionts in mass algal cultivation systems. The bacterial communities associated with microalgae are a crucial factor in the process of microalgal biomass and lipid production and may stimulate or inhibit growth of biofuel-producing microalgae. In addition, we discuss here the potential use of bacteria to harvest biofuel-producing microalgae. We propose that aggregation of microalgae by bacteria to achieve >90% reductions in volume followed by centrifugation could be an economic approach for harvesting of biofuel-producing microalgae. Our aims in this review are to promote understanding of the effects of bacterial communities on microalgae and draw attention to the importance of this topic in the microalgal biofuel field.


Assuntos
Biocombustíveis , Microalgas , Consórcios Microbianos , Simbiose
18.
Proc Natl Acad Sci U S A ; 112(14): 4381-6, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25713351

RESUMO

Marine sponges are major habitat-forming organisms in coastal benthic communities and have an ancient origin in evolution history. Here, we report significant accumulation of polyphosphate (polyP) granules in three common sponge species of the Caribbean coral reef. The identity of the polyP granules was confirmed by energy-dispersive spectroscopy (EDS) and by the fluorescence properties of the granules. Microscopy images revealed that a large proportion of microbial cells associated with sponge hosts contained intracellular polyP granules. Cyanobacterial symbionts cultured from sponges were shown to accumulate polyP. We also amplified polyphosphate kinase (ppk) genes from sponge DNA and confirmed that the gene was expressed. Based on these findings, we propose here a potentially important phosphorus (P) sequestration pathway through symbiotic microorganisms of marine sponges. Considering the widespread sponge population and abundant microbial cells associated with them, this pathway is likely to have a significant impact on the P cycle in benthic ecosystems.


Assuntos
Cianobactérias/metabolismo , Fósforo/fisiologia , Poríferos/microbiologia , Simbiose , Animais , Proteínas de Bactérias , Biodiversidade , Recifes de Corais , Ecossistema , Florida , Proteínas Luminescentes , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Dados de Sequência Molecular , Fósforo/química , Polifosfatos/química , RNA Ribossômico 16S/genética , Especificidade da Espécie
19.
Genome Announc ; 3(1)2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25700405

RESUMO

Rhodobacteraceae strain PD-2 was isolated from the marine microalga Prorocentrum donghaiense. It has algicidal activity toward its host and could produce N-acylhomoserine lactone signals. Here, we present the draft genome of strain PD-2, which contains 5,227,214 bp with an average GC content of 66.19%. There were 4,864 encoding gene sequences and two clusters of luxI and luxR homologues identified.

20.
Microbiology (Reading) ; 161(Pt 1): 50-56, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25355937

RESUMO

Marine sponges harbour abundant and diverse bacterial communities, providing an ideal environment for bacterial cell-density-dependent cell-cell signalling, termed quorum sensing. The marine sponge symbiont Ruegeria sp. KLH11 produces mainly long chain acylhomoserine lactones (AHLs) and has been developed as a quorum sensing model for roseobacterial sponge symbionts. Two pairs of luxR/I homologues were identified by genetic screening and were designated ssaRI and ssbRI (sponge-associated symbiont locus A or B, luxR/luxI homologue). In this study, we identified a third luxI-type gene, named sscI. The sscI gene does not have a cognate luxR homologue present at an adjacent locus and thus sscI is an AHL synthase solo. The sscI gene is required for production of long-chain hydroxylated AHLs, contributes to AHL pools and modestly influences flagellar motility in KLH11. A triple mutant for all luxI-type genes cannot produce AHLs, but still synthesizes para-coumaroyl-homoserine lactone.


Assuntos
Acil-Butirolactonas/metabolismo , Proteínas de Bactérias/genética , Poríferos/microbiologia , Rhodobacteraceae/genética , Rhodobacteraceae/metabolismo , Simbiose , Fatores de Transcrição/genética , Animais , Regulação Bacteriana da Expressão Gênica , Ordem dos Genes , Loci Gênicos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...