Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 23(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34828192

RESUMO

In 1943, McCulloch and Pitts introduced a discrete recurrent neural network as a model for computation in brains. The work inspired breakthroughs such as the first computer design and the theory of finite automata. We focus on learning in Hopfield networks, a special case with symmetric weights and fixed-point attractor dynamics. Specifically, we explore minimum energy flow (MEF) as a scalable convex objective for determining network parameters. We catalog various properties of MEF, such as biological plausibility, and then compare to classical approaches in the theory of learning. Trained Hopfield networks can perform unsupervised clustering and define novel error-correcting coding schemes. They also efficiently find hidden structures (cliques) in graph theory. We extend this known connection from graphs to hypergraphs and discover n-node networks with robust storage of 2Ω(n1-ϵ) memories for any ϵ>0. In the case of graphs, we also determine a critical ratio of training samples at which networks generalize completely.

2.
J Math Neurosci ; 8(1): 1, 2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29340803

RESUMO

The Hopfield recurrent neural network is a classical auto-associative model of memory, in which collections of symmetrically coupled McCulloch-Pitts binary neurons interact to perform emergent computation. Although previous researchers have explored the potential of this network to solve combinatorial optimization problems or store reoccurring activity patterns as attractors of its deterministic dynamics, a basic open problem is to design a family of Hopfield networks with a number of noise-tolerant memories that grows exponentially with neural population size. Here, we discover such networks by minimizing probability flow, a recently proposed objective for estimating parameters in discrete maximum entropy models. By descending the gradient of the convex probability flow, our networks adapt synaptic weights to achieve robust exponential storage, even when presented with vanishingly small numbers of training patterns. In addition to providing a new set of low-density error-correcting codes that achieve Shannon's noisy channel bound, these networks also efficiently solve a variant of the hidden clique problem in computer science, opening new avenues for real-world applications of computational models originating from biology.

3.
Entropy (Basel) ; 19(8)2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-33535369

RESUMO

Maximum entropy models are increasingly being used to describe the collective activity of neural populations with measured mean neural activities and pairwise correlations, but the full space of probability distributions consistent with these constraints has not been explored. We provide upper and lower bounds on the entropy for the minimum entropy distribution over arbitrarily large collections of binary units with any fixed set of mean values and pairwise correlations. We also construct specific low-entropy distributions for several relevant cases. Surprisingly, the minimum entropy solution has entropy scaling logarithmically with system size for any set of first- and second-order statistics consistent with arbitrarily large systems. We further demonstrate that some sets of these low-order statistics can only be realized by small systems. Our results show how only small amounts of randomness are needed to mimic low-order statistical properties of highly entropic distributions, and we discuss some applications for engineered and biological information transmission systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...