Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecology ; 104(8): e4112, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37252804

RESUMO

Analysis of functional traits is a cornerstone of ecology, yet individual traits seldom explain useful amounts of variation in species distribution or climatic tolerance, and their functional significance is rarely validated experimentally. Multivariate suites of interacting traits could build an understanding of ecological processes and improve our ability to make sound predictions of species success in our rapidly changing world. We use foliar water uptake capacity as a case study because it is increasingly considered to be a key functional trait in plant ecology due to its importance for stress-tolerance physiology. However, the traits behind the trait, that is, the features of leaves that determine variation in foliar water uptake rates, have not been assembled into a widely applicable framework for uptake prediction. Focusing on trees, we investigated relationships among 25 structural traits, leaf osmotic potential (a source of free energy to draw water into leaves), and foliar water uptake in 10 diverse angiosperm and conifer species. We identified consistent, multitrait "uptake syndromes" for both angiosperm and conifer trees, with differences in key traits revealing suspected differences in the water entry route between these two clades and an evolutionarily significant divergence in the function of homologous structures. A literature review of uptake-associated functional traits, which largely documents similar univariate relationships, provides additional support for our proposed "uptake syndrome." Importantly, more than half of shared traits had opposite-direction influences on the capacity of leaves to absorb water in angiosperms and conifers. Taxonomically targeted multivariate trait syndromes provide a useful tool for trait selection in ecological research, while highlighting the importance of micro-traits and the physiological verification of their function for advancing trait-based ecology.


Assuntos
Magnoliopsida , Traqueófitas , Árvores/fisiologia , Água/análise , Ecologia , Traqueófitas/fisiologia , Folhas de Planta/química
4.
Nat Commun ; 12(1): 1242, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623042

RESUMO

Indirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.


Assuntos
Mudança Climática , Árvores/fisiologia , Fertilidade/fisiologia , Geografia , Modelos Teóricos , América do Norte , Estações do Ano
5.
New Phytol ; 229(3): 1375-1387, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32638379

RESUMO

Large intraspecific functional trait variation strongly impacts many aspects of communities and ecosystems, and is the medium upon which evolution works. Yet intraspecific trait variation is inconsistent and hard to predict across traits, species and locations. We measured within-species variation in leaf mass per area (LMA), leaf dry matter content (LDMC), branch wood density (WD), and allocation to stem area vs leaf area in branches (branch Huber value (HV)) across the aridity range of seven Australian eucalypts and a co-occurring Acacia species to explore how traits and their variances change with aridity. Within species, we found consistent increases in LMA, LDMC and WD and HV with increasing aridity, resulting in consistent trait coordination across leaves and branches. However, this coordination only emerged across sites with large climate differences. Unlike trait means, patterns of trait variance with aridity were mixed across populations and species. Only LDMC showed constrained trait variation in more xeric species and drier populations that could indicate limits to plasticity or heritable trait variation. Our results highlight that climate can drive consistent within-species trait patterns, but that patterns might often be obscured by the complex nature of morphological traits, sampling incomplete species ranges or sampling confounded stress gradients.


Assuntos
Ecossistema , Árvores , Austrália , Fenótipo , Folhas de Planta
6.
Nat Ecol Evol ; 4(12): 1622-1629, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33106604

RESUMO

Changes in the temporal coherence between populations, which can influence their stability, resilience and persistence, remain a critical uncertainty of climate change. Recent studies have documented increasing spatial synchrony between populations at continental scales and linked it to anthropogenic climate change. However, the lack of long-term and global baseline perspectives on spatial synchrony presents a challenge to understanding the importance of these trends. Here, we show a steady rise in the spatial synchrony of annual tree growth from a global tree ring database over the past 50 years that is consistent across continents, species and environmental conditions and is unprecedented for the past millennium. Increasing growth synchrony coincided with warming trends and potentially rising synchrony in the temperature records. We discuss the potential driving mechanisms and the limitations in the interpretation of this trend, and we propose that increasing mutual dependency on external factors (also known as Moran's effect) linked to rising global temperatures is the most likely driver of more homogeneous global growth dynamics.


Assuntos
Florestas , Árvores , Mudança Climática , Temperatura
7.
AoB Plants ; 12(2): plz048, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32346468

RESUMO

Although dispersal is generally viewed as a crucial determinant for the fitness of any organism, our understanding of its role in the persistence and spread of plant populations remains incomplete. Generalizing and predicting dispersal processes are challenging due to context dependence of seed dispersal, environmental heterogeneity and interdependent processes occurring over multiple spatial and temporal scales. Current population models often use simple phenomenological descriptions of dispersal processes, limiting their ability to examine the role of population persistence and spread, especially under global change. To move seed dispersal ecology forward, we need to evaluate the impact of any single seed dispersal event within the full spatial and temporal context of a plant's life history and environmental variability that ultimately influences a population's ability to persist and spread. In this perspective, we provide guidance on integrating empirical and theoretical approaches that account for the context dependency of seed dispersal to improve our ability to generalize and predict the consequences of dispersal, and its anthropogenic alteration, across systems. We synthesize suitable theoretical frameworks for this work and discuss concepts, approaches and available data from diverse subdisciplines to help operationalize concepts, highlight recent breakthroughs across research areas and discuss ongoing challenges and open questions. We address knowledge gaps in the movement ecology of seeds and the integration of dispersal and demography that could benefit from such a synthesis. With an interdisciplinary perspective, we will be able to better understand how global change will impact seed dispersal processes, and potential cascading effects on plant population persistence, spread and biodiversity.

8.
Ecol Lett ; 23(1): 140-148, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31663682

RESUMO

Ecologists expect species and biomes to shift poleward and upward with climate change, but non-climatic factors complicate these predictions. In mountains, forests are expected to expand upward along climate gradients into subalpine/alpine meadows, while meadows expand upward onto bare ground. However, soils also vary across elevation, with bare soil above the meadows potentially poorer for plant establishment. Poor soil might constrain expansion at meadows' upper edges, while rich meadow soil might facilitate contraction at lower edges by promoting tree establishment. We assessed climate and soil effects on establishment by transplanting soil and seedlings of meadow and tree species across climate gradients on Mount Rainier. There were considerable interspecific differences, but some generalisations emerged. Survival often declined with earlier snow disappearance, with somewhat smaller declines in meadow soil. Size often increased with earlier snow disappearance, with larger increases in meadow soil. Thus, soil patterns may complicate range shifts.


Assuntos
Plântula , Solo , Mudança Climática , Florestas , Neve , Árvores
9.
Ecology ; 101(2): e02922, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31652337

RESUMO

Stochasticity is a core component of ecology, as it underlies key processes that structure and create variability in nature. Despite its fundamental importance in ecological systems, the concept is often treated as synonymous with unpredictability in community ecology, and studies tend to focus on single forms of stochasticity rather than taking a more holistic view. This has led to multiple narratives for how stochasticity mediates community dynamics. Here, we present a framework that describes how different forms of stochasticity (notably demographic and environmental stochasticity) combine to provide underlying and predictable structure in diverse communities. This framework builds on the deep ecological understanding of stochastic processes acting at individual and population levels and in modules of a few interacting species. We support our framework with a mathematical model that we use to synthesize key literature, demonstrating that stochasticity is more than simple uncertainty. Rather, stochasticity has profound and predictable effects on community dynamics that are critical for understanding how diversity is maintained. We propose next steps that ecologists might use to explore the role of stochasticity for structuring communities in theoretical and empirical systems, and thereby enhance our understanding of community dynamics.


Assuntos
Ecossistema , Modelos Teóricos , Ecologia , Modelos Biológicos , Dinâmica Populacional , Processos Estocásticos
10.
Appl Plant Sci ; 7(3): e01225, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30937218

RESUMO

PREMISE OF THE STUDY: Herbarium specimens are increasingly used to study reproductive phenology. Here, we ask whether classifying reproduction into progressively finer-scale stages improves our understanding of the relationship between climate and reproductive phenology. METHODS: We evaluated Acer rubrum herbarium specimens across eastern North America, classifying them into eight reproductive phenophases and four stages of leaf development. We fit models with different reproductive phenology categorization schemes (from detailed to broad) and compared model fits and coefficients describing temperature, elevation, and year effects. We fit similar models to leaf phenology data to compare reproductive to leafing phenology. RESULTS: Finer-scale reproductive phenophases improved model fits and provided more precise estimates of reproductive phenology. However, models with fewer reproductive phenophases led to similar qualitative conclusions, demonstrating that A. rubrum reproduces earlier in warmer locations, lower elevations, and in recent years, as well as that leafing phenology is less strongly influenced by temperature than is reproductive phenology. DISCUSSION: Our study suggests that detailed information on reproductive phenology provides a fuller understanding of potential climate change effects on flowering, fruiting, and leaf-out. However, classification schemes with fewer reproductive phenophases provided many similar insights and may be preferable in cases where resources are limited.

11.
AoB Plants ; 11(2): plz006, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30895154

RESUMO

Seed dispersal enables plants to reach hospitable germination sites and escape natural enemies. Understanding when and how much seed dispersal matters to plant fitness is critical for understanding plant population and community dynamics. At the same time, the complexity of factors that determine if a seed will be successfully dispersed and subsequently develop into a reproductive plant is daunting. Quantifying all factors that may influence seed dispersal effectiveness for any potential seed-vector relationship would require an unrealistically large amount of time, materials and financial resources. On the other hand, being able to make dispersal predictions is critical for predicting whether single species and entire ecosystems will be resilient to global change. Building on current frameworks, we here posit that seed dispersal ecology should adopt plant functional groups as analytical units to reduce this complexity to manageable levels. Functional groups can be used to distinguish, for their constituent species, whether it matters (i) if seeds are dispersed, (ii) into what context they are dispersed and (iii) what vectors disperse them. To avoid overgeneralization, we propose that the utility of these functional groups may be assessed by generating predictions based on the groups and then testing those predictions against species-specific data. We suggest that data collection and analysis can then be guided by robust functional group definitions. Generalizing across similar species in this way could help us to better understand the population and community dynamics of plants and tackle the complexity of seed dispersal as well as its disruption.

12.
Ecol Lett ; 22(5): 787-796, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30793454

RESUMO

Species often respond to human-caused climate change by shifting where they occur on the landscape. To anticipate these shifts, we need to understand the forces that determine where species currently occur. We tested whether a long-hypothesised trade-off between climate and competitive constraints explains where tree species grow on mountain slopes. Using tree rings, we reconstructed growth sensitivity to climate and competition in range centre and range margin tree populations in three climatically distinct regions. We found that climate often constrains growth at environmentally harsh elevational range boundaries, and that climatic and competitive constraints trade-off at large spatial scales. However, there was less evidence that competition consistently constrained growth at benign elevational range boundaries; thus, local-scale climate-competition trade-offs were infrequent. Our work underscores the difficulty of predicting local-scale range dynamics, but suggests that the constraints on tree performance at a large-scale (e.g. latitudinal) may be predicted from ecological theory.


Assuntos
Mudança Climática , Árvores , Árvores/crescimento & desenvolvimento
13.
Nature ; 562(7725): 57-62, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30258229

RESUMO

The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature-trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming.


Assuntos
Aquecimento Global , Fenômenos Fisiológicos Vegetais , Plantas/anatomia & histologia , Tundra , Biometria , Mapeamento Geográfico , Umidade , Fenótipo , Solo/química , Análise Espaço-Temporal , Temperatura , Água/análise
14.
Ecol Lett ; 21(5): 734-744, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29569818

RESUMO

The utility of plant functional traits for predictive ecology relies on our ability to interpret trait variation across multiple taxonomic and ecological scales. Using extensive data sets of trait variation within species, across species and across communities, we analysed whether and at what scales leaf economics spectrum (LES) traits show predicted trait-trait covariation. We found that most variation in LES traits is often, but not universally, at high taxonomic levels (between families or genera in a family). However, we found that trait covariation shows distinct taxonomic scale dependence, with some trait correlations showing opposite signs within vs. across species. LES traits responded independently to environmental gradients within species, with few shared environmental responses across traits or across scales. We conclude that, at small taxonomic scales, plasticity may obscure or reverse the broad evolutionary linkages between leaf traits, meaning that variation in LES traits cannot always be interpreted as differences in resource use strategy.


Assuntos
Evolução Biológica , Folhas de Planta , Ecologia , Fenótipo , Fenômenos Fisiológicos Vegetais , Plantas
15.
Tree Physiol ; 38(5): 664-677, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29190366

RESUMO

Functional traits associated with drought resistance can be useful for predicting tree responses to a drying climate. Yet drought resistance is likely achieved through a complex combination of constitutive traits (traits expressed even in benign environments) and plastic traits (traits expressed only in response to drought). Because few studies measure multiple traits for multiple species under both well-watered and drought conditions, we often struggle to identify suites of constitutive and plastic traits indicative of drought resistance strategies. Using a greenhouse experiment, we examined nine drought resistance traits (six morphological/allocation traits plus assimilation, stomatal conductance and water-use efficiency) in well-watered and water-stressed seedlings of four Brachychiton (Malvaceae Juss.) species with ranges spanning a strong aridity gradient in east-central Australia. In benign conditions, constitutive biomass allocation was consistent with expectations, with xeric species investing more heavily in roots and stem tissue and less in leaf tissue than mesic species (P = 0.004). Under drought conditions, xeric species decreased relative biomass allocation below-ground while mesic species increased relative below-ground allocation (treatment × species interaction P = 0.0015). Relative water content of the stems was slightly higher in xeric species (P = 0.055), and remained stable during drought while decreasing in mesic species (treatment × species P = 0.001). Specific leaf area (SLA) and leaf dry matter content (LDMC) did not fit with expectations under either benign or water-limited conditions. Moreover, stomatal conductance and carbon assimilation were unexpectedly highest and intrinsic water-use efficiency (WUEi) lowest in the xeric species in benign conditions. Only under drought did the xeric species manifest higher WUEi than the mesic species (treatment × species P < 0.0001). We found that even closely related species exhibited diverse combinations of drought resistance traits. Notably, traits commonly used as proxies for drought tolerance (e.g., SLA, LDMC, well-watered WUEi) performed more poorly than constitutive allocation traits. This study highlights the need to consider multiple traits and phenotypic plasticity when assessing species' drought resistance for forest management in the face of climate change.


Assuntos
Secas , Características de História de Vida , Malvaceae/anatomia & histologia , Malvaceae/fisiologia , Austrália , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia , Caules de Planta/anatomia & histologia , Caules de Planta/fisiologia , Plântula/anatomia & histologia , Plântula/fisiologia , Especificidade da Espécie
16.
Ecology ; 98(11): 2799-2812, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29023677

RESUMO

Spatial community reassembly driven by changes in species abundances or habitat occupancy is a well-documented response to anthropogenic global change, but communities can also reassemble temporally if the environment drives differential shifts in the timing of life events across community members. Much like spatial community reassembly, temporal reassembly could be particularly important when critical species interactions are temporally concentrated (e.g., plant-pollinator dynamics during flowering). Previous studies have documented species-specific shifts in phenology driven by climate change, implying that temporal reassembly, a process we term "phenological reassembly," is likely. However, few studies have documented changes in the temporal co-occurrence of community members driven by environmental change, likely because few datasets of entire communities exist. We addressed this gap by quantifying the relationship between flowering phenology and climate for 48 co-occurring subalpine wildflower species at Mount Rainier (Washington, USA) in a large network of plots distributed across Mt. Rainier's steep environmental gradients; large spatio-temporal variability in climate over the 6 yr of our study (including the earliest and latest snowmelt year on record) provided robust estimates of climate-phenology relationships for individual species. We used these relationships to examine changes to community co-flowering composition driven by 'climate change analog' conditions experienced at our sites in 2015. We found that both the timing and duration of flowering of focal species was strongly sensitive to multiple climatic factors (snowmelt, temperature, and soil moisture). Some consistent responses emerged, including earlier snowmelt and warmer growing seasons driving flowering phenology earlier for all focal species. However, variation among species in their phenological sensitivities to these climate drivers was large enough that phenological reassembly occurred in the climate change analog conditions of 2015. An unexpected driver of phenological reassembly was fine-scale variation in the direction and magnitude of climatic change, causing phenological reassembly to be most apparent early and late in the season and in topographic locations where snow duration was shortest (i.e., at low elevations and on ridges in the landscape). Because phenological reassembly may have implications for many types of ecological interactions, failing to monitor community-level repercussions of species-specific phenological shifts could underestimate climate change impacts.


Assuntos
Mudança Climática , Flores/classificação , Pradaria , Fenótipo , Flores/anatomia & histologia , Plantas , Estações do Ano , Neve , Temperatura , Washington
17.
Tree Physiol ; 37(9): 1140-1150, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28379516

RESUMO

Developmental phenotypic plasticity can allow plants to buffer the effects of abiotic and biotic environmental stressors. Therefore, it is vital to improve our understanding of how phenotypic plasticity in ecological functional traits is coordinated with variation in physiological performance in plants. To identify coordinated leaf responses to low-water (LW) versus low-light (LL) availability, we measured leaf mass per area (LMA), leaf anatomical characteristics and leaf gas exchange of juvenile Populus tremuloides Michx. trees. Spongy mesophyll tissue surface area (Asmes/A) was correlated with intrinsic water-use efficiency (WUEi: photosynthesis, (Aarea)/stomatal conductance (gs)). Under LW availability, these changes occurred at the cost of greater leaf tissue density and reduced expansive growth, as leaves were denser but were only 20% the final area of control leaves, resulting in elevated LMA and elevated WUEi. Low light resulted in reduced palisade mesophyll surface area (Apmes/A) while spongy mesophyll surface area was maintained (Asmes/A), with no changes to WUEi. These leaf morphological changes may be a plastic strategy to increase laminar light capture while maintaining WUEi. With reduced density and thickness, however, leaves were 50% the area of control leaves, ultimately resulting in reduced LMA. Our results illustrate that P. tremuloides saplings partially maintain physiological function in response to water and light limitation by inducing developmental plasticity in LMA with underlying anatomical changes. We discuss additional implications of these results in the context of developmental plasticity, growth trade-offs and the ecological impacts of climate change.


Assuntos
Luz , Folhas de Planta/crescimento & desenvolvimento , Populus/crescimento & desenvolvimento , Água , Mudança Climática , Fotossíntese , Folhas de Planta/efeitos da radiação , Populus/efeitos da radiação
18.
Nat Commun ; 8: 14557, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28270682

RESUMO

Invasive vertebrate predators are directly responsible for the extinction or decline of many vertebrate species, but their indirect impacts often go unmeasured, potentially leading to an underestimation of their full impact. When invasives extirpate functionally important mutualists, dependent species are likely to be affected as well. Here, we show that the invasive brown treesnake, directly responsible for the extirpation of forest birds from the island of Guam, is also indirectly responsible for a severe decline in plant recruitment as a result of disrupting the fruit-frugivore mutualism. To assess the impact of frugivore loss on plants, we compare seed dispersal and recruitment of two fleshy-fruited tree species on Guam and three nearby islands with intact disperser communities. We conservatively estimate that the loss of frugivorous birds caused by the brown treesnake may have caused a 61-92% decline in seedling recruitment. This case study highlights the potential for predator invasions to cause indirect, pervasive and easily overlooked interaction cascades.


Assuntos
Colubridae/fisiologia , Espécies Introduzidas , Fenômenos Fisiológicos Vegetais , Comportamento Predatório , Animais , Aves/fisiologia , Ecossistema , Extinção Biológica , Frutas , Germinação , Guam , Modelos Teóricos , Dinâmica Populacional , Dispersão de Sementes
19.
Glob Chang Biol ; 23(9): 3921-3933, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28161909

RESUMO

Forecasts of widespread range shifts with climate change stem from assumptions that climate drives species' distributions. However, local adaptation and biotic interactions also influence range limits and thus may impact range shifts. Despite the potential importance of these factors, few studies have directly tested their effects on performance at range limits. We address how population-level variation and biotic interactions may affect range shifts by transplanting seeds and seedlings of western North American conifers of different origin populations into different competitive neighborhoods within and beyond their elevational ranges and monitoring their performance. We find evidence that competition with neighboring trees limits performance within current ranges, but that interactions between adults and juveniles switch from competitive to facilitative at upper range limits. Local adaptation had weaker effects on performance that did not predictably vary with range position or seed origin. Our findings suggest that competitive interactions may slow species turnover within forests at lower range limits, whereas facilitative interactions may accelerate the pace of tree expansions upward near timberline.


Assuntos
Mudança Climática , Traqueófitas/crescimento & desenvolvimento , Clima , Reprodução , Sementes , Árvores
20.
F1000Res ; 52016.
Artigo em Inglês | MEDLINE | ID: mdl-27785355

RESUMO

Succession and community assembly research overlap in many respects, such as through their focus on how ecological processes like dispersal, environmental filters, and biotic interactions influence community structure. Indeed, many recent advances have been made by successional studies that draw on modern analytical techniques introduced by contemporary community assembly studies. However, community assembly studies generally lack a temporal perspective, both on how the forces structuring communities might change over time and on how historical contingency (e.g. priority effects and legacy effects) and complex transitions (e.g. threshold effects) might alter community trajectories. We believe a full understanding of the complex interacting processes that shape community dynamics across large temporal scales can best be achieved by combining concepts, tools, and study systems into an integrated conceptual framework that draws upon both succession and community assembly theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...