Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38585932

RESUMO

Alpha-synuclein (αSyn) aggregation and the formation of Lewy pathology (LP) is a foundational pathophysiological phenomenon in synucleinopathies. Delivering therapeutic single-chain and single-domain antibodies that bind pathogenic targets can disrupt intracellular aggregation. The fusion of antibody fragments to a negatively-charged proteasomal targeting motif (PEST) creates bifunctional constructs that enhance both solubility and turnover. With sequence-specific point mutations of PEST sequences that modulate proteasomal degradation efficiency, we report the creation of Programmable Target Antigen Proteolysis (PTAP) technology that can provide graded control over the levels of target antigens. We have previously demonstrated our lead anti-αSyn intrabody, VH14-PEST, is capable of reducing the pathological burden of synucleinopathy in vitro and in vivo. Here, we report a family of fully humanized VH14-PTAP constructs for controllable, therapeutic targeting of intracellular α-Syn. In cells, we demonstrate successful target engagement and efficacy of VH14-hPEST intrabodies, and validate proof-of-principle in human cells using 3D human organoids derived from PD-patient induced pluripotent stem cells (iPSC). In two synuclein-based rat models, PTAP intrabodies attenuated nigral αSyn pathology, preserved nigrostriatal dopaminergic tone, and slowed the propagation of αSyn pathology. These data demonstrate the potency of intracellular αSyn targeting as a method to alleviate pathology and highlight the potential clinical utility of PTAP intrabodies.

2.
NPJ Regen Med ; 7(1): 24, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35449132

RESUMO

In pursuit of treating Parkinson's disease with cell replacement therapy, differentiated induced pluripotent stem cells (iPSC) are an ideal source of midbrain dopaminergic (mDA) cells. We previously established a protocol for differentiating iPSC-derived post-mitotic mDA neurons capable of reversing 6-hydroxydopamine-induced hemiparkinsonism in rats. In the present study, we transitioned the iPSC starting material and defined an adapted differentiation protocol for further translation into a clinical cell transplantation therapy. We examined the effects of cellular maturity on survival and efficacy of the transplants by engrafting mDA progenitors (cryopreserved at 17 days of differentiation, D17), immature neurons (D24), and post-mitotic neurons (D37) into immunocompromised hemiparkinsonian rats. We found that D17 progenitors were markedly superior to immature D24 or mature D37 neurons in terms of survival, fiber outgrowth and effects on motor deficits. Intranigral engraftment to the ventral midbrain demonstrated that D17 cells had a greater capacity than D24 cells to innervate over long distance to forebrain structures, including the striatum. When D17 cells were assessed across a wide dose range (7,500-450,000 injected cells per striatum), there was a clear dose response with regards to numbers of surviving neurons, innervation, and functional recovery. Importantly, although these grafts were derived from iPSCs, we did not observe teratoma formation or significant outgrowth of other cells in any animal. These data support the concept that human iPSC-derived D17 mDA progenitors are suitable for clinical development with the aim of transplantation trials in patients with Parkinson's disease.

3.
Stem Cells Transl Med ; 10(2): 278-290, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32997443

RESUMO

Nongenetic methodologies to reduce undesirable proliferation would be valuable when generating dopamine neurons from stem cells for transplantation in Parkinson's disease (PD). To this end, we modified an established method for controlled differentiation of human induced pluripotent stem cells (iPSCs) into midbrain dopamine neurons using two distinct methods: omission of FGF8 or the in-process use of the DNA cross-linker mitomycin-C (MMC). We transplanted the cells to athymic rats with unilateral 6-hydroxydopamine lesions and monitored long-term survival and function of the grafts. Transplants of cells manufactured using MMC had low proliferation while still permitting robust survival and function comparable to that seen with transplanted dopamine neurons derived using genetic drug selection. Conversely, cells manufactured without FGF8 survived transplantation but exhibited poor in vivo function. Our results suggest that MMC can be used to reduce the number of proliferative cells in stem cell-derived postmitotic neuron preparations for use in PD cell therapy.


Assuntos
Neurônios Dopaminérgicos , Células-Tronco Pluripotentes Induzidas , Mitomicina , Doença de Parkinson , Animais , Diferenciação Celular , Proliferação de Células , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Mitomicina/farmacologia , Doença de Parkinson/terapia , Ratos , Transplante de Células-Tronco
4.
Neurobiol Dis ; 148: 105184, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33221532

RESUMO

Multiple system atrophy (MSA) is a rare and extremely debilitating progressive neurodegenerative disease characterized by variable combinations of parkinsonism, cerebellar ataxia, dysautonomia, and pyramidal dysfunction. MSA is a unique synucleinopathy, in which alpha synuclein-rich aggregates are present in the cytoplasm of oligodendroglia. The precise origin of the alpha synuclein (aSyn) found in the glial cytoplasmic inclusions (GCIs) as well the mechanisms of neurodegeneration in MSA remain unclear. Despite this fact, cell and animal models of MSA rely on oligodendroglial overexpression of aSyn. In the present study, we utilized a novel oligotrophic AAV, Olig001, to overexpress aSyn specifically in striatal oligodendrocytes of rats and nonhuman primates in an effort to further characterize our novel viral vector-mediated MSA animal models. Using two cohorts of animals with 10-fold differences in Olig001 vector titers, we show a dose-dependent formation of MSA-like pathology in rats. High titer of Olig001-aSyn in these animals were required to produce the formation of pS129+ and proteinase K resistant aSyn-rich GCIs, demyelination, and neurodegeneration. Using this knowledge, we injected high titer Olig001 in the putamen of cynomolgus macaques. After six months, histological analysis showed that oligodendroglial overexpression of aSyn resulted in the formation of hallmark GCIs throughout the putamen, demyelination, a 44% reduction of striatal neurons and a 12% loss of nigral neurons. Furthermore, a robust inflammatory response similar to MSA was produced in Olig001-aSyn NHPs, including microglial activation, astrogliosis, and a robust infiltration of T cells into the CNS. Taken together, oligodendroglial-specific viral vector-mediated overexpression of aSyn in rats and nonhuman primates faithfully reproduces many of the pathological disease hallmarks found in MSA. Future studies utilizing these large animal models of MSA would prove extremely valuable as a pre-clinical platform to test novel therapeutics that are so desperately needed for MSA.


Assuntos
Modelos Animais de Doenças , Atrofia de Múltiplos Sistemas/genética , Neostriado/patologia , Neurônios/patologia , Oligodendroglia/patologia , Putamen/patologia , alfa-Sinucleína/genética , Animais , Dependovirus , Vetores Genéticos , Humanos , Macaca fascicularis , Atrofia de Múltiplos Sistemas/metabolismo , Atrofia de Múltiplos Sistemas/patologia , Oligodendroglia/metabolismo , Ratos , Técnicas Estereotáxicas , alfa-Sinucleína/metabolismo
5.
Stem Cell Reports ; 9(1): 149-161, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28579395

RESUMO

A major challenge for clinical application of pluripotent stem cell therapy for Parkinson's disease (PD) is large-scale manufacturing and cryopreservation of neurons that can be efficiently prepared with minimal manipulation. To address this obstacle, midbrain dopamine neurons were derived from human induced pluripotent stem cells (iPSC-mDA) and cryopreserved in large production lots for biochemical and transplantation studies. Cryopreserved, post-mitotic iPSC-mDA neurons retained high viability with gene, protein, and electrophysiological signatures consistent with midbrain floor-plate lineage. To test therapeutic efficacy, cryopreserved iPSC-mDA neurons were transplanted without subculturing into the 6-OHDA-lesioned rat and MPTP-lesioned non-human-primate models of PD. Grafted neurons retained midbrain lineage with extensive fiber innervation in both rodents and monkeys. Behavioral assessment in 6-OHDA-lesioned rats demonstrated significant reversal in functional deficits up to 6 months post transplantation with reinnervation of the host striatum and no aberrant growth, supporting the translational development of pluripotent cell-based therapies in PD.


Assuntos
Criopreservação , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/transplante , Células-Tronco Pluripotentes Induzidas/citologia , Doença de Parkinson/terapia , Animais , Linhagem Celular , Corpo Estriado/citologia , Corpo Estriado/patologia , Criopreservação/métodos , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Haplorrinos , Humanos , Mesencéfalo/citologia , Mesencéfalo/patologia , Neurogênese , Doença de Parkinson/patologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...