Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 25(14): 16310-16331, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28789138

RESUMO

Constellation modulation (CM) is introduced as a new degree of freedom to increase the spectral efficiency and to further approach the Shannon limit. Constellation modulation is the art of encoding information not only in the symbols within a constellation but also by encoding information by selecting a constellation from a set of constellations that are switched from time to time. The set of constellations is not limited to sets of partitions from a given constellation but can e.g., be obtained from an existing constellation by applying geometrical transformations such as rotations, translations, scaling, or even more abstract transformations. The architecture of the transmitter and the receiver allows for constellation modulation to be used on top of existing modulations with little penalties on the bit-error ratio (BER) or on the required signal-to-noise ratio (SNR). The spectral bandwidth used by this modulation scheme is identical to the original modulation. Simulations demonstrate a particular advantage of the scheme for low SNR situations. So, for instance, it is demonstrated by simulation that a spectral efficiency increases by up to 33% and 20% can be obtained at a BER of 10-3 and 2×10-2 for a regular BPSK modulation format, respectively. Applying constellation modulation, we derive a most power efficient 4D-CM-BPSK modulation format that provides a spectral efficiency of 0.7 bit/s/Hz for an SNR of 0.2 dB at a BER of 2 × 10-2.

2.
Opt Express ; 24(22): 25629-25640, 2016 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-27828498

RESUMO

A blind frequency and phase search algorithm for joint frequency and phase recovery is introduced. The algorithm achieves low complexity due to processing in polar coordinates, which reduces the amount of multiplications. We show an implementation for real-time processing at 32 GBd on FPGA hardware. The hardware design allows for dynamic multi-format operation, where the format can be switched flexibly after each clock cycle (250 MHz, 128 Symbols) between 4QAM, 8QAM, and 16QAM. The performance of the algorithm is evaluated with respect to laser phase noise, carrier frequency offset, and carrier frequency offset drift. The effect of working with limited hardware resources is investigated. An FPGA implementation shows the feasibility of our carrier recovery algorithm with a negligible penalty when compared to a floating point simulation.

3.
Nano Lett ; 15(12): 8342-6, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26570995

RESUMO

A scheme for the direct conversion of millimeter and THz waves to optical signals is introduced. The compact device consists of a plasmonic phase modulator that is seamlessly cointegrated with an antenna. Neither high-speed electronics nor electronic amplification is required to drive the modulator. A built-in enhancement of the electric field by a factor of 35,000 enables the direct conversion of millimeter-wave signals to the optical domain. This high enhancement is obtained via a resonant antenna that is directly coupled to an optical field by means of a plasmonic modulator. The suggested concept provides a simple and cost-efficient alternative solution to conventional schemes where millimeter-wave signals are first converted to the electrical domain before being up-converted to the optical domain.

4.
Opt Express ; 23(5): 6952-64, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25836915

RESUMO

Ultra-fast, continuously tunable true-time delays are key components in many microwave and optical communications subsystems. In this paper, we introduce and demonstrate a new implementation method of a continuously tunable true-time delay featuring a settling time in the order of tens of picoseconds. Our solution relies on the splitting and combining of complementary phased shifted spectra (CPSS). It works for large bandwidth signals, has a low complexity, offers moderate losses, and can be fully integrated.

5.
Nat Photonics ; 8(5): 375-380, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24860615

RESUMO

Optical frequency combs have the potential to revolutionize terabit communications1. Generation of Kerr combs in nonlinear microresonators2 represents a particularly promising option3 enabling line spacings of tens of GHz. However, such combs may exhibit strong phase noise4-6, which has made high-speed data transmission impossible up to now. Here we demonstrate that systematic adjustment of pump conditions for low phase noise4,7-9 enables coherent data transmission with advanced modulation formats that pose stringent requirements on the spectral purity of the comb. In a first experiment, we encode a data stream of 392 Gbit/s on a Kerr comb using quadrature phase shift keying (QPSK) and 16-state quadrature amplitude modulation (16QAM). A second experiment demonstrates feedback-stabilization of the comb and transmission of a 1.44 Tbit/s data stream over up to 300 km. The results show that Kerr combs meet the highly demanding requirements of coherent communications and thus offer an attractive solution towards chip-scale terabit/s transceivers.

6.
Opt Lett ; 37(22): 4681-3, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23164878

RESUMO

Defect-mediated subbandgap absorption is observed in ion-implanted silicon-on-oxide waveguides that experience a rapid thermal annealing at 1075°C. With this effect, general carrier-depletion silicon modulators exhibit the capability of optical power monitoring. Responsivity is measured to be 22 mA/W for a 3 mm long Mach-Zehnder modulator of 2×10(18) cm(-3) doping concentration at -7.1 V bias voltage and 5.9 mA/W for a ring modulator of 1×10(18) cm(-3) doping concentration at -10 V bias voltage. The former is used to demonstrate data detection of up to 35 Gbits/s.

7.
Opt Express ; 20(19): 21413-33, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23037264

RESUMO

A self-coherent receiver capable of demultiplexing PolMUX-signals without an external polarization controller is presented. Training sequences are introduced to estimate the polarization rotation, and a decision feedback recursive algorithm mitigates the random walk of the recovered field. The concept is tested for a PolMUX-DQPSK modulation format where one polarization carries a normal DQPSK signal while the other polarization is encoded as a progressive phase-shift DQPSK signal. An experimental demonstration of the scheme for a 112 Gbit/s PolMUX-DQPSK signal is presented.

8.
Opt Express ; 20(12): 12926-38, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22714320

RESUMO

Carrier-depletion based silicon modulators with lateral and interdigitated PN junctions are compared systematically on the same fabrication platform. The interdigitated diode is shown to outperform the lateral diode in achieving a low VπLπ of 0.62 V∙cm with comparable propagation loss at the expense of a higher depletion capacitance. The low VπLπ of the interdigitated PN junction is employed to demonstrate 10 Gbit/s modulation with 7.5 dB extinction ration from a 500 µm long device whose static insertion loss is 2.8 dB. In addition, up to 40 Gbit/s modulation is demonstrated for a 3 mm long device comprising a lateral diode and a co-designed traveling wave electrode.

9.
Opt Express ; 19(12): 11654-66, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21716398

RESUMO

A free-space optical delay interferometer (DI) featuring a continuously tunable time delay, polarization insensitive operation with high extinction ratios and accurate phase and time delay monitoring scheme is reported. The polarization dependence is actively mitigated by adjusting a birefringent liquid-crystal device. The DI has been tested for reception of D(m)PSK signals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA