Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 52(6): 1608-1615, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36645392

RESUMO

A palladium diphosphine pincer complex H3(PNNNP-PdI) has been encapsulated in the benzotriazolate metal-organic framework MFU-4l-OH ([Zn5(OH)4(btdd)3], btdd2- = bis(1,2,3-triazolo)dibenzodioxin), and the resulting materials were investigated as Lewis acid catalysts for cyclization of citronellal to isopulegol. Rapid catalyst immobilization is facilitated by a Brønsted acid-base reaction between the H3(PNNNP-PdI) benzoic acid substituents and Zn-OH groups at the framework nodes. Catalyst loading can be controlled up to a maximum of 0.5 pincer complexes per formula unit [PdI-x, Zn5(OH)4-nx(btdd)3(H3-nPNNNP-PdI)xx = 0.06-0.5, n ≈ 2.75]. Oxidative ligand exchange was used to replace I- with weakly coordinating BF4- anions at the Pd-I sites, generating the activated PdBF4-x catalysts (x = 0.06, 0.10, 0.18, 0.40). The Lewis acid catalytic activity of the PdBF4-x series decreases with increasing catalyst density as a result of the appearance of mass transport limitations. Initial catalytic rates show that the activity of PdBF4-0.06 approaches the intrinsic activity of a homogeneous PNNNP-PdBF4 catalyst analogue. In addition, PdBF4-0.06 exhibits better catalytic activity than the metallolinker-based MOF Zr-PdBF4 and was not subject to leaching or catalyst degradation processes observed for the homogeneous analogue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...