Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(46): e2208575119, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343254

RESUMO

Genetic variability can be generated by different mechanisms, and across the life cycle. Many basidiomycete fungi have an extended somatic stage, during which each cell carries two genetically distinct haploid nuclei (dikaryosis), resulting from fusion of two compatible monokaryotic individuals. Recent findings have revealed remarkable genome stability at the nucleotide level during dikaryotic growth in these organisms, but whether this pattern extends to mutations affecting large genomic regions remains unknown. Furthermore, despite high genome integrity during dikaryosis, basidiomycete populations are not devoid of genetic diversity, begging the question of when this diversity is introduced. Here, we used a Marasmius oreades fairy ring to investigate the rise of large-scale variants during mono- and dikaryosis. By separating the two nuclear genotypes from four fruiting bodies and generating complete genome assemblies, we gained access to investigate genomic changes of any size. We found that during dikaryotic growth in nature the genome stayed intact, but after separating the nucleotypes into monokaryons, a considerable amount of structural variation started to accumulate, driven to large extent by transposons. Transposon insertions were also found in monokaryotic single-meiospore isolates. Hence, we show that genome integrity in basidiomycetes can be interrupted during monokaryosis, leading to genomic rearrangements and increased activity of transposable elements. We suggest that genetic diversification is disproportionate between life cycle stages in mushroom-forming fungi, so that the short-lived monokaryotic growth stage is more prone to genetic changes than the dikaryotic stage.


Assuntos
Agaricales , Basidiomycota , Marasmius , Humanos , Animais , Basidiomycota/genética , Agaricales/genética , Estágios do Ciclo de Vida
2.
Genome Biol Evol ; 13(7)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34051082

RESUMO

Marasmius oreades is a basidiomycete fungus that grows in so called "fairy rings," which are circular, underground mycelia common in lawns across temperate areas of the world. Fairy rings can be thought of as natural, long-term evolutionary experiments. As each ring has a common origin and expands radially outwards over many years, different sectors will independently accumulate mutations during growth. The genotype can be followed to the next generation, as mushrooms producing the sexual spores are formed seasonally at the edge of the ring. Here, we present new genomic data from 95 single-spore isolates of the species, which we used to construct a genetic linkage map and an updated version of the genome assembly. The 44-Mb assembly was anchored to 11 linkage groups, producing chromosome-length scaffolds. Gene annotation revealed 13,891 genes, 55% of which contained a pfam domain. The repetitive fraction of the genome was 22%, and dominated by retrotransposons and DNA elements of the KDZ and Plavaka groups. The level of assembly contiguity we present is so far rare in mushroom-forming fungi, and we expect studies of genomics, transposons, phylogenetics, and evolution to be facilitated by the data we present here of the iconic fairy-ring mushroom.


Assuntos
Marasmius , Fungos , Ligação Genética , Genoma
3.
Bioinformatics ; 37(15): 2203-2205, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-33216122

RESUMO

SUMMARY: Linked genomic sequencing reads contain information that can be used to join sequences together into scaffolds in draft genome assemblies. Existing software for this purpose performs the scaffolding by joining sequences with a gap between them, not considering potential overlaps of contigs. We developed ARBitR to create scaffolds where overlaps are taken into account and show that it can accurately recreate regions where draft assemblies are broken. AVAILABILITY AND IMPLEMENTATION: ARBitR is written and implemented in Python3 for Unix-based operative systems. All source code is available at https://github.com/markhilt/ARBitR under the GNU General Public License v3. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Software , Genoma , Genômica , Análise de Sequência de DNA
4.
Curr Biol ; 29(16): 2758-2765.e6, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31402298

RESUMO

Most mutations in coding regions of the genome are deleterious, causing selection to favor mechanisms that minimize the mutational load over time [1-5]. DNA replication during cell division is a major source of new mutations. It is therefore important to limit the number of cell divisions between generations, particularly for large and long-lived organisms [6-9]. The germline cells of animals and the slowly dividing cells in plant meristems are adaptations to control the number of mutations that accumulate over generations [9-11]. Fungi lack a separated germline while harboring species with very large and long-lived individuals that appear to maintain highly stable genomes within their mycelia [8, 12, 13]. Here, we studied genomic mutation accumulation in the fairy-ring mushroom Marasmius oreades. We generated a chromosome-level genome assembly using a combination of cutting-edge DNA sequencing technologies and re-sequenced 40 samples originating from six individuals of this fungus. The low number of mutations recovered in the sequencing data suggests the presence of an unknown mechanism that works to maintain extraordinary genome integrity over vegetative growth in M. oreades. The highly structured growth pattern of M. oreades allowed us to estimate the number of cell divisions leading up to each sample [14, 15], and from this data, we infer an incredibly low per mitosis mutation rate (3.8 × 10-12 mutations per site and cell division) as one of several possible explanations for the low number of identified mutations.


Assuntos
Genoma Fúngico , Marasmius/genética , Mutação , Divisão Celular , Marasmius/crescimento & desenvolvimento , Mitose
5.
Environ Microbiol ; 20(5): 1641-1650, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29441658

RESUMO

Despite increasing knowledge on host-associated microbiomes, little is known about mechanisms underlying fungus-microbiome interactions. This study aimed to examine the relative importance of host genetic, geographic and environmental variations in structuring fungus-associated microbiomes. We analyzed the taxonomic composition and function of microbiomes inhabiting fungal fruiting-bodies in relation to host genetic variation, soil pH and geographic distance between samples. For this, we sequenced the metagenomes of 40 fruiting-bodies collected from six fairy rings (i.e., genets) of a saprotrophic fungus Marasmius oreades. Our analyses revealed that fine genetic variations between host fungi could strongly affect their associated microbiome, explaining, respectively, 25% and 37% of the variation in microbiome structure and function, whereas geographic distance and soil pH remained of secondary importance. These results, together with the smaller genome size of fungi compared to other eukaryotes, suggest that fruiting-bodies are suitable for further genome-centric studies on host-microbiome interactions.


Assuntos
Ascomicetos/genética , Ascomicetos/fisiologia , Carpóforos/fisiologia , Variação Genética , Microbiota , Microbiologia do Solo
6.
Environ Microbiol Rep ; 10(2): 155-166, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29327481

RESUMO

Recent advances in molecular methods have increased our understanding of various fungal symbioses. However, little is known about genomic and microbiome features of most uncultured symbiotic fungal clades. Here, we analysed the genome and microbiome of Inocybaceae (Agaricales, Basidiomycota), a largely uncultured ectomycorrhizal clade known to form symbiotic associations with a wide variety of plant species. We used metagenomic sequencing and assembly of dikaryotic fruiting-body tissues from Inocybe terrigena (Fr.) Kuyper, to classify fungal and bacterial genomic sequences, and obtained a nearly complete fungal genome containing 93% of core eukaryotic genes. Comparative genomics reveals that I. terrigena is more similar to ectomycorrhizal and brown rot fungi than to white rot fungi. The reduction in lignin degradation capacity has been independent from and significantly faster than in closely related ectomycorrhizal clades supporting that ectomycorrhizal symbiosis evolved independently in Inocybe. The microbiome of I. terrigena fruiting-bodies includes bacteria with known symbiotic functions in other fungal and non-fungal host environments, suggesting potential symbiotic functions of these bacteria in fungal tissues regardless of habitat conditions. Our study demonstrates the usefulness of direct metagenomics analysis of fruiting-body tissues for characterizing fungal genomes and microbiome.


Assuntos
Agaricales/genética , Bactérias/isolamento & purificação , Microbiota , Agaricales/classificação , Agaricales/isolamento & purificação , Agaricales/fisiologia , Bactérias/classificação , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Carpóforos/classificação , Carpóforos/genética , Carpóforos/isolamento & purificação , Carpóforos/fisiologia , Genoma Fúngico , Metagenômica , Filogenia , Simbiose
7.
Nat Commun ; 8(1): 1140, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29074958

RESUMO

A common feature of eukaryote genomes is large chromosomal regions where recombination is absent or strongly reduced, but the factors that cause this reduction are not well understood. Genomic rearrangements have often been implicated, but they may also be a consequence of recombination suppression rather than a cause. In this study, we generate eight high-quality genomic data sets of the filamentous ascomycete Neurospora tetrasperma, a fungus that lacks recombination over most of its largest chromosome. The genomes surprisingly reveal collinearity of the non-recombining regions and although large inversions are enriched in these regions, we conclude these inversions to be derived and not the cause of the suppression. To our knowledge, this is the first time that non-recombining, genic regions as large as 86% of a full chromosome (or 8 Mbp), are shown to be collinear. These findings are of significant interest for our understanding of the evolution of sex chromosomes and other supergene complexes.


Assuntos
Cromossomos Fúngicos/genética , Genoma Fúngico/genética , Neurospora/genética , Recombinação Genética , Genes Fúngicos Tipo Acasalamento/genética , Genômica/métodos , Modelos Genéticos , Neurospora/classificação , Filogenia , Especificidade da Espécie
8.
Biomed Mater Eng ; 27(4): 425-436, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27689575

RESUMO

Bioactive glass (BG)-containing fiber-reinforced composite implants, typically screw-retained, have started to be used clinically. In this study, we tested the mechanical strength of composites formed by a potential implant adhesive of n-butyl-2-cyanoacrylate glue and BG S53P4 particles. Water immersion for 3, 10 or 30 days had no adverse effect on the compression strength. When cyanoacrylate glue-BG-composites were subjected to simulated body fluid immersion, the average pH rose to 7.52 (SD 0.066) from the original value of 7.35 after 7 days, and this pH increment was smaller compared to BG particle-group or fibrin glue-BG-composite group. Based on these results n-butyl-2 cyanoacrylate glue, by potentially producing a strong adhesion, might be considered a possible alternative for fixation of BG S53P4 containing composite implants. However, the mechanical and solubility properties of the cyanoacrylate glue may not encourage the use of this tissue adhesive with BG particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...