Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 38(10): e23670, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38747803

RESUMO

HPSE2, the gene-encoding heparanase 2 (Hpa2), is mutated in urofacial syndrome (UFS), a rare autosomal recessive congenital disease attributed to peripheral neuropathy. Hpa2 lacks intrinsic heparan sulfate (HS)-degrading activity, the hallmark of heparanase (Hpa1), yet it exhibits a high affinity toward HS, thereby inhibiting Hpa1 enzymatic activity. Hpa2 regulates selected genes that promote normal differentiation, tissue homeostasis, and endoplasmic reticulum (ER) stress, resulting in antitumor, antiangiogenic, and anti-inflammatory effects. Importantly, stress conditions induce the expression of Hpa2, thus establishing a feedback loop, where Hpa2 enhances ER stress which, in turn, induces Hpa2 expression. In most cases, cancer patients who retain high levels of Hpa2 survive longer than patients bearing Hpa2-low tumors. Experimentally, overexpression of Hpa2 attenuates the growth of tumor xenografts, whereas Hpa2 gene silencing results in aggressive tumors. Studies applying conditional Hpa2 knockout (cHpa2-KO) mice revealed an essential involvement of Hpa2 contributed by the host in protecting against cancer and inflammation. This was best reflected by the distorted morphology of the Hpa2-null pancreas, including massive infiltration of immune cells, acinar to adipocyte trans-differentiation, and acinar to ductal metaplasia. Moreover, orthotopic inoculation of pancreatic ductal adenocarcinoma (PDAC) cells into the pancreas of Hpa2-null vs. wild-type mice yielded tumors that were by far more aggressive. Likewise, intravenous inoculation of cancer cells into cHpa2-KO mice resulted in a dramatically increased lung colonization reflecting the involvement of Hpa2 in restricting the formation of a premetastatic niche. Elucidating Hpa2 structure-activity-relationships is expected to support the development of Hpa2-based therapies against cancer and inflammation.


Assuntos
Glucuronidase , Inflamação , Neoplasias , Humanos , Animais , Inflamação/metabolismo , Inflamação/patologia , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/genética , Glucuronidase/metabolismo , Glucuronidase/genética , Camundongos , Estresse do Retículo Endoplasmático
2.
Cell Death Dis ; 15(3): 232, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519456

RESUMO

Unlike the intense research effort devoted to exploring the significance of heparanase in cancer, very little attention was given to Hpa2, a close homolog of heparanase. Here, we explored the role of Hpa2 in breast cancer. Unexpectedly, we found that patients endowed with high levels of Hpa2 exhibited a higher incidence of tumor metastasis and survived less than patients with low levels of Hpa2. Immunohistochemical examination revealed that in normal breast tissue, Hpa2 localizes primarily in the cell nucleus. In striking contrast, in breast carcinoma, Hpa2 expression is not only decreased but also loses its nuclear localization and appears diffuse in the cell cytoplasm. Importantly, breast cancer patients in which nuclear localization of Hpa2 is retained exhibited reduced lymph-node metastasis, suggesting that nuclear localization of Hpa2 plays a protective role in breast cancer progression. To examine this possibility, we engineered a gene construct that directs Hpa2 to the cell nucleus (Hpa2-Nuc). Notably, overexpression of Hpa2 in breast carcinoma cells resulted in bigger tumors, whereas targeting Hpa2 to the cell nucleus attenuated tumor growth and tumor metastasis. RNAseq analysis was performed to reveal differentially expressed genes (DEG) in Hpa2-Nuc tumors vs. control. The analysis revealed, among others, decreased expression of genes associated with the hallmark of Kras, beta-catenin, and TNF-alpha (via NFkB) signaling. Our results imply that nuclear localization of Hpa2 prominently regulates gene transcription, resulting in attenuation of breast tumorigenesis. Thus, nuclear Hpa2 may be used as a predictive parameter in personalized medicine for breast cancer patients.


Assuntos
Neoplasias da Mama , Glucuronidase , Humanos , Feminino , Glucuronidase/genética , Glucuronidase/metabolismo , Neoplasias da Mama/genética , Transdução de Sinais , Núcleo Celular/metabolismo
3.
Proteoglycan Res ; 1(3): e6, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37547889

RESUMO

Heparanase (Hpa1) is expressed by tumor cells and cells of the tumor microenvironment and functions extracellularly to remodel the extracellular matrix (ECM) and regulate the bioavailability of ECM-bound factors, augmenting, among other effects, gene transcription, autophagy, exosome formation, and heparan sulfate (HS) turnover. Much of the impact of heparanase on tumor progression is related to its function in mediating tumor-host crosstalk, priming the tumor microenvironment to better support tumor growth, metastasis, and chemoresistance. The enzyme appears to fulfill some normal functions associated, for example, with vesicular traffic, lysosomal-based secretion, autophagy, HS turnover, and gene transcription. It activates cells of the innate immune system, promotes the formation of exosomes and autophagosomes, and stimulates signal transduction pathways via enzymatic and nonenzymatic activities. These effects dynamically impact multiple regulatory pathways that together drive tumor growth, dissemination, and drug resistance as well as inflammatory responses. The emerging premise is that heparanase expressed by tumor cells, immune cells, endothelial cells, and other cells of the tumor microenvironment is a key regulator of the aggressive phenotype of cancer, an important contributor to the poor outcome of cancer patients and a valid target for therapy. So far, however, antiheparanase-based therapy has not been implemented in the clinic. Unlike heparanase, heparanase-2 (Hpa2), a close homolog of heparanase (Hpa1), does not undergo proteolytic processing and hence lacks intrinsic HS-degrading activity, the hallmark of heparanase. Hpa2 retains the capacity to bind heparin/HS and exhibits an even higher affinity towards HS than heparanase, thus competing for HS binding and inhibiting heparanase enzymatic activity. It appears that Hpa2 functions as a natural inhibitor of Hpa1 regulates the expression of selected genes that maintain tissue hemostasis and normal function, and plays a protective role against cancer and inflammation, together emphasizing the significance of maintaining a proper balance between Hpa1 and Hpa2.

4.
J Biol Chem ; 289(49): 34258-66, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25339171

RESUMO

The sodium- and chloride-coupled GABA transporter GAT-1 is a member of the neurotransmitter:sodium:symporters, which are crucial for synaptic transmission. Structural work on the bacterial homologue LeuT suggests that extracellular loop 4 closes the extracellular solvent pathway when the transporter becomes inward-facing. To test whether this model can be extrapolated to GAT-1, cysteine residues were introduced at positions 359 and 448 of extracellular loop 4 and transmembrane helix 10, respectively. Treatment of HeLa cells, expressing the double cysteine mutant S359C/K448C with the oxidizing reagent copper(II)(1,10-phenantroline)3, resulted in a significant inhibition of [(3)H]GABA transport. However, transport by the single cysteine mutant S359C was also inhibited by the oxidant, whereas its activity was almost 4-fold stimulated by dithiothreitol. Both effects were attenuated when the conserved cysteine residues, Cys-164 and/or Cys-173, were replaced by serine. These cysteines are located in extracellular loop 2, the role of which in the structure and function of the eukaryotic neurotransmitter:sodium:symporters remains unknown. The inhibition of transport of S359C by the oxidant was markedly reduced under conditions expected to increase the proportion of inward-facing transporters, whereas the reactivity of the mutants to a membrane-impermeant sulfhydryl reagent was not conformationally sensitive. Our data suggest that extracellular loops 2 and 4 come into close proximity to each other in the outward-facing conformation of GAT-1.


Assuntos
Cisteína/química , Proteínas da Membrana Plasmática de Transporte de GABA/química , Oócitos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Colina/metabolismo , Colina/farmacologia , Cisteína/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Expressão Gênica , Gluconatos/metabolismo , Gluconatos/farmacologia , Células HeLa , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Modelos Moleculares , Mutação , Oócitos/citologia , Oócitos/efeitos dos fármacos , Técnicas de Patch-Clamp , Fenantrolinas/química , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Xenopus laevis , Ácido gama-Aminobutírico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...