Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Transplant ; 29: e941054, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38287661

RESUMO

BACKGROUND Ischemia/reperfusion injury (IRI) is an inherent problem in organ transplantation, owing to the obligate period of ischemia that organs must endure. Cyclosporine A (CsA), though better know as an immunosuppressant, has been shown to mitigate warm IRI in a variety of organ types, including the liver. However, there is little evidence for CsA in preventing hepatic IRI in the transplant setting. MATERIAL AND METHODS In the present study, we tested the effect of CsA on hepatic IRI in a large-animal ex vivo model of donation after circulatory death (DCD). Porcine donors were pre-treated with either normal saline control or 20 mg/kg of CsA. Animals were subject to either 45 or 60 minutes of warm ischemia before hepatectomy, followed by 2 or 4 hours of cold storage prior to reperfusion on an ex vivo circuit. Over the course of a 12-hour perfusion, perfusion parameters were recorded and perfusate samples and biopsies were taken at regular intervals. RESULTS Peak perfusate lactate dehydrogenase was significantly decreased in the lower-ischemia group treated with CsA compared to the untreated group (4220 U/L [3515-5815] vs 11 305 [10 100-11 674]; P=0.023). However, no difference was seen between controls and CsA-treated groups on other parameters in perfusate alanine or asparagine aminotransferase (P=0.912, 0.455, respectively). Correspondingly, we found no difference on midpoint histological injury score (P=0.271). CONCLUSIONS We found minimal evidence that CsA is protective against hepatic IRI in our DCD model.


Assuntos
Ciclosporina , Traumatismo por Reperfusão , Suínos , Animais , Ciclosporina/farmacologia , Ciclosporina/uso terapêutico , Fígado/patologia , Traumatismo por Reperfusão/patologia , Perfusão , Reperfusão , Preservação de Órgãos/métodos
2.
Am J Transplant ; 23(4): 475-483, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36695686

RESUMO

We sought to determine the role of donor blood circulating leukocytes in mediating oxidative stress and inflammation during normothermic ex situ heart perfusion (ESHP). Normothermic ESHP allows preservation of donated heart in a perfused, dynamic state, preventing ischemia. However, the cardiac function declines during ESHP, limiting the potential of this method for improvement of the outcomes of transplantation and expanding the donor pool. Extracorporeal circulation-related oxidative stress plays a critical role in the functional decline of the donor heart. Hearts from domestic pigs were perfused in working mode (WM, whole blood-based or leukocyte-depleted blood-based perfusate) or nonworking mode. Markers of oxidative stress and responsive glucose anabolic pathways were induced in the myocardium regardless of left ventricular load. Myocardial function during ESHP as well as cardioprotective mechanisms were preserved better in WM. Leukocyte-depleted perfusate did not attenuate tissue oxidative stress or perfusate proinflammatory cytokines and did not improve functional preservation. Although ESHP is associated with ongoing oxidative stress and metabolic alteration in the myocardium, preserved cardioprotective mechanisms in WM may exert beneficial effects. Leukocyte depletion of the perfusate may not attenuate inflammation and oxidative stress effectively or improve the functional preservation of the heart during ESHP.


Assuntos
Transplante de Coração , Humanos , Transplante de Coração/efeitos adversos , Transplante de Coração/métodos , Doadores de Tecidos , Miocárdio , Perfusão/métodos , Estresse Oxidativo , Inflamação/metabolismo , Leucócitos , Preservação de Órgãos/métodos
3.
J Heart Lung Transplant ; 41(12): 1738-1750, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36137869

RESUMO

BACKGROUND: Evidence suggests that hearts that are perfused under ex-situ conditions lose normal coronary vasomotor tone and experience contractile failure over a few hours. We aimed to evaluate the effect of different coronary perfusion strategies during ex situ heart perfusion on cardiac function and coronary vascular tone. METHODS: Porcine hearts (n = 6 each group) were perfused in working mode for 6 hours with either constant aortic diastolic pressure (40 mmHg) or constant coronary flow rate (500 mL/min). Functional and metabolic parameters, cytokine profiles, cardiac and vascular injury, coronary artery function and oxidative stress were compared between groups. RESULTS: Constant coronary flow perfusion demonstrated better functional preservation and less edema formation (Cardiac index: flow control = 8.33 vs pressure control = 6.46 mL·min-1·g-1, p = 0.016; edema formation: 7.92% vs 19.80%, p < 0.0001). Pro-inflammatory cytokines, platelet activation as well as endothelial activation were lower in the flow control group. Similarly, less cardiac and endothelial injury was observed in the constant coronary flow group. Evaluation of coronary artery function showed there was loss of coronary autoregulation in both groups. Oxidative stress was induced in the coronary arteries and was relatively lower in the flow control group. CONCLUSIONS: A strategy of controlled coronary flow during ex situ heart perfusion provides superior functional preservation and less edema formation, together with less myocardial damage, leukocyte, platelet, endothelial activation, and oxidative stress. There was loss of coronary autoregulation and decrease of coronary vascular resistance during ESHP irrespective of coronary flow control strategy. Inflammation and oxidative stress state in the coronary vasculature may play a role.


Assuntos
Vasos Coronários , Transplante de Coração , Suínos , Animais , Perfusão , Coração/fisiologia , Miocárdio/metabolismo
4.
J Vis Exp ; (180)2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35225271

RESUMO

Lung transplantation is the gold-standard treatment for end-stage lung disease, with over 4,600 lung transplantations performed worldwide annually. However, lung transplantation is limited by a shortage of available donor organs. As such, there is high waitlist mortality. Ex situ lung perfusion (ESLP) has increased donor lung utilization rates in some centers by 15%-20%. ESLP has been applied as a method to assess and recondition marginal donor lungs and has demonstrated acceptable short- and long-term outcomes following transplantation of extended criteria donor (ECD) lungs. Large animal (in vivo) transplantation models are required to validate ongoing in vitro research findings. Anatomic and physiologic differences between humans and pigs pose significant technical and anesthetic challenges. An easily reproducible transplant model would permit the in vivo validation of current ESLP strategies and the preclinical evaluation of various interventions designed to improve donor lung function. This protocol describes a porcine model of orthotopic left lung allotransplantation. This includes anesthetic and surgical techniques, a customized surgical checklist, troubleshooting, modifications, and the benefits and limitations of the approach.


Assuntos
Transplante de Pulmão , Transplantes , Animais , Humanos , Pulmão/cirurgia , Transplante de Pulmão/métodos , Perfusão/métodos , Suínos , Doadores de Tecidos
5.
J Vis Exp ; (180)2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35225272

RESUMO

Lung transplantation (LTx) remains the standard of care for end-stage lung disease. A shortage of suitable donor organs and concerns over donor organ quality exacerbated by excessive geographic transportation distance and stringent donor organ acceptance criteria pose limitations to current LTx efforts. Ex situ lung perfusion (ESLP) is an innovative technology that has shown promise in attenuating these limitations. The physiologic ventilation and perfusion of the lungs outside of the inflammatory milieu of the donor body affords ESLP several advantages over traditional cold static preservation (CSP). There is evidence that negative pressure ventilation (NPV) ESLP is superior to positive pressure ventilation (PPV) ESLP, with PPV inducing more significant ventilator-induced lung injury, pro-inflammatory cytokine production, pulmonary edema, and bullae formation. The NPV advantage is perhaps due to the homogenous distribution of intrathoracic pressure across the entire lung surface. The clinical safety and feasibility of a custom NPV-ESLP device have been demonstrated in a recent clinical trial involving extender criteria donor (ECD) human lungs. Herein, the use of this custom device is described in a juvenile porcine model of normothermic NPV-ESLP over a 12 h duration, paying particular attention to management techniques. Pre-surgical preparation, including ESLP software initialization, priming, and de-airing of the ESLP circuit, and the addition of anti-thrombotic, anti-microbial, and anti-inflammatory agents, is specified. The intraoperative techniques of central line insertion, lung biopsy, exsanguination, blood collection, cardiectomy, and pneumonectomy are described. Furthermore, particular focus is paid to anesthetic considerations, with anesthesia induction, maintenance, and dynamic modifications outlined. The protocol also specifies the custom device's initialization, maintenance, and termination of perfusion and ventilation. Dynamic organ management techniques, including alterations in ventilation and metabolic parameters to optimize organ function, are thoroughly described. Finally, the physiological and metabolic assessment of lung function is characterized and depicted in the representative results.


Assuntos
Transplante de Pulmão , Edema Pulmonar , Animais , Humanos , Pulmão/patologia , Transplante de Pulmão/métodos , Preservação de Órgãos/métodos , Perfusão/métodos , Respiração Artificial , Suínos
6.
ASAIO J ; 67(11): 1222-1231, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33741785

RESUMO

Ex situ heart perfusion (ESHP) is being investigated as a method for the continuous preservation of the myocardium in a semiphysiologic state for subsequent transplantation. Most methods of ESHP position the isolated heart in a hanging (H) state, representing a considerable departure from the in vivo anatomical positioning of the heart and may negatively affect the functional preservation of the heart. In the current study, cardiac functional and metabolic parameters were assessed in healthy pig hearts, perfused for 12 hours, in either an H, or supported (S) position, either in nonworking mode (NWM) or working mode (WM). The cardiac function was best preserved in the S position hearts in WM (median 11 hour cardiac index (CI)/1 hour CI%: working mode perfusion in supported position = 94.77% versus nonworking mode perfusion in supported position = 62.80%, working mode perfusion in H position = 36.18%, nonworking mode perfusion in H position = 9.75%; p < 0.001). Delivery of pyruvate bolus significantly improved the function in S groups, however, only partially reversed myocardial dysfunction in the H heart groups. The hearts perfused ex situ in a semianatomical S position and in physiologic WM had better functional preservation and recovery than the H hearts in non-S position. Optimizing the positional support for the ex situ-perfused hearts may improve myocardial preservation during ESHP.


Assuntos
Transplante de Coração , Animais , Coração , Miocárdio , Preservação de Órgãos , Perfusão , Suínos
7.
Cryobiology ; 97: 93-100, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33031822

RESUMO

Although lung transplant remains the only option for patients with end-stage lung failure, short preservation times result in an inability to meet patient demand. Successful cryopreservation may ameliorate this problem; however, very little research has been performed on lung cryopreservation due to the inability to prevent ice nucleation or growth. Therefore, this research sought to characterize the efficacy of a small-molecule ice recrystallization inhibitor (IRI) for lung cryopreservation given its well-documented ability to control ice growth. Sprague-Dawley heart-lung blocks were perfused at room temperature using a syringe-pump. Cytotoxicity of the IRI was assessed through the subsequent perfusion with 0.4% (w/v) trypan blue followed by formalin-fixation. Ice control was assessed by freezing at a chamber rate of -5 °C/min to -20 °C and cryofixation using a low-temperature fixative. Post-thaw cell survival was determined by freezing at a chamber rate of -5 °C/min to -20 °C and thawing in a 37 °C water bath before formalin-fixation. In all cases, samples were paraffin-embedded, sliced, and stained with eosin. The IRI studied was found to be non-toxic, as cell membrane integrity following perfusion was not significantly different than controls (p = 0.9292). Alveolar ice grain size was significantly reduced by the addition of this IRI (p = 0.0096), and the addition of the IRI to DMSO significantly improved post-thaw cell membrane integrity when compared to controls treated with DMSO alone (p = 0.0034). The techniques described here provide a low-cost solution for rat ex vivo lung perfusion which demonstrated that the ice control and improved post-thaw cell survival afforded by IRI-use warrants further study.


Assuntos
Criopreservação , Crioprotetores , Animais , Criopreservação/métodos , Crioprotetores/farmacologia , Humanos , Gelo , Pulmão , Perfusão , Ratos , Ratos Sprague-Dawley
8.
Transplant Proc ; 52(10): 2941-2946, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32624230

RESUMO

BACKGROUND: Normothermic ex vivo lung perfusion (EVLP) has been used successfully to evaluate and recondition marginal donor lungs; however, multiple barriers continue to prevent its widespread adoption. We sought to develop a common hospital ingredient-derived perfusate (CHIP) with equivalent functional and inflammatory characteristics to a standard Krebs-Henseleit buffer with 8% serum albumin-derived perfusate (KHB-Alb) to improve access and reduce costs of ex vivo organ perfusion. METHODS: Sixteen porcine lungs were perfused using negative pressure ventilation (NPV) EVLP for 12 hours in a normothermic state and were allocated equally to 2 groups: KHB-Alb vs CHIP. Physiological parameters, cytokine profiles, and edema formation were compared between treatment groups. RESULTS: Perfused lungs in both groups demonstrated equivalent oxygenation (partial pressure of arterial oxygen/fraction of inspired oxygen ratio >350 mm Hg) and physiological parameters. There was equivalent generation of tumor necrosis factor-α and IL-6, irrespective of perfusate solution used, when comparing CHIP vs KHB-Alb. Pig lungs developed equivalent edema formation between groups (CHIP: 15.8 ± 4.8%, KHB-Alb 19.5 ± 4.4%, P > .05). CONCLUSION: A perfusate derived of common hospital ingredients provides equivalent results to a standard Krebs-Henseleit buffer with 8% serum albumin-based perfusate in NPV-EVLP.


Assuntos
Transplante de Pulmão , Pulmão/efeitos dos fármacos , Soluções para Preservação de Órgãos/farmacologia , Preservação de Órgãos/métodos , Perfusão/métodos , Animais , Feminino , Transplante de Pulmão/métodos , Sus scrofa , Suínos
9.
Circ Heart Fail ; 13(6): e006552, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32498623

RESUMO

BACKGROUND: Ex situ heart perfusion (ESHP) preserves the donated heart in a perfused, beating condition preventing cold storage-related ischemia and provides a platform to evaluate myocardial viability during preservation. However, myocardial function declines gradually during ESHP. Extracorporeal circulation systems are associated with the induction of systemic inflammatory and stress responses. Our aim was to evaluate the incidence of inflammation and induction of endoplasmic reticulum stress responses during an extended period of ESHP. METHODS: Cardiac function, myocardial tissue injury, markers of inflammation, oxidative stress, and endoplasmic reticulum stress were assessed in healthy pig hearts, perfused for 12 hours either in nonworking mode (non-WM=7) or working mode (WM, n=6). RESULTS: Cardiac function declined during ESHP but was significantly better preserved in the hearts perfused in WM (median 11-hour cardiac index/1-hour cardiac index: WM=27% versus non-WM=9.5%, P=0.022). Myocardial markers of endoplasmic reticulum stress were expressed higher in ESHP hearts compared with in vivo samples. The proinflammatory cytokines and oxidized low-density lipoprotein significantly increased in the perfusate throughout the perfusion in both perfusion groups. The left ventricular expression of the cytokines and malondialdehyde was induced in non-WM, whereas it was not different between WM and in vivo. CONCLUSIONS: Myocardial function declines during ESHP regardless of perfusion mode. However, ESHP in WM may lead to superior preservation of myocardial function and viability. Both inflammation and endoplasmic reticulum stress responses are significantly induced during ESHP and may contribute to the myocardial functional decline, representing a potential therapeutic target to improve the clinical donor heart preservation.


Assuntos
Estresse do Retículo Endoplasmático , Inflamação/metabolismo , Miocárdio/metabolismo , Estresse Oxidativo , Perfusão/efeitos adversos , Animais , Citocinas/metabolismo , Feminino , Inflamação/imunologia , Inflamação/patologia , Inflamação/fisiopatologia , Mediadores da Inflamação/metabolismo , Preparação de Coração Isolado , Lipoproteínas LDL/metabolismo , Malondialdeído/metabolismo , Miocárdio/imunologia , Miocárdio/patologia , Sus scrofa , Fatores de Tempo , Sobrevivência de Tecidos , Função Ventricular Esquerda
10.
Am J Transplant ; 19(12): 3390-3397, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31420938

RESUMO

Ex vivo lung perfusion (EVLP) protocols generally limit metabolic supplementation to insulin and glucose. We sought to determine whether the addition of total parenteral nutrition (TPN) would improve lung function in EVLP. Ten porcine lungs were perfused using EVLP for 24 hours and supplemented with insulin and glucose. In the treatment group (n = 5), the perfusate was also supplemented with a continuous infusion of TPN containing lipids, amino acids, essential vitamins, and cofactors. Physiologic parameters and perfusate electrolytes were continuously evaluated. Perfusate lactate, lipid and branch chain amino acid (BCAA) concentrations were also analyzed to elucidate how substrates were being utilized over time. Lungs in the TPN group exhibited significantly better oxygenation. Perfusate sodium was more stable in the TPN group. In the control group, free fatty acids (FFA) were quickly depleted, reaching negligible levels early in the perfusion. Alternatively, BCAA in the control group rose continually over the perfusion demonstrating a shift toward proteolysis for energy substrate. In the TPN group, both FFA and BCAA concentrations remained stable at in vivo levels after initial stabilization. TNF-α concentrations were lower in the TPN group. The addition of TPN in EVLP allows for better electrolyte composition, decreased inflammation, and improved graft performance.


Assuntos
Circulação Extracorpórea/métodos , Inflamação/prevenção & controle , Transplante de Pulmão/métodos , Soluções para Preservação de Órgãos/farmacologia , Preservação de Órgãos/métodos , Nutrição Parenteral Total/métodos , Perfusão/métodos , Animais , Feminino , Inflamação/metabolismo , Oxigênio/metabolismo , Suínos
11.
Transplant Proc ; 51(6): 2022-2028, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31303418

RESUMO

BACKGROUND: Extended periods of ex vivo lung perfusion (EVLP) lead to several inadvertent consequences including accumulation of lactate and increasing electrolyte concentrations in the perfusate. We sought to determine whether continuous hemodialysis (CHD) of the perfusate would be a suitable modality for improving ionic homeostasis in extended EVLP without compromising functional outcomes. METHODS: Twelve porcine lungs were perfused using EVLP for 24 hours. All lungs were ventilated with negative pressure ventilation. Lungs in the treatment group (n = 6) underwent continuous hemodialysis of the perfusate. Functional parameters, edema formation, and histopathologic analysis were used to assess graft function. Electrolyte and lactate profiles were also followed to assess the efficiency of hemodialysis. RESULTS: Lungs in both treatment and control groups demonstrated stable and acceptable oxygenation to 24 hours. Lungs demonstrated a decrease in compliance over time. There was no difference in oxygenation and compliance between groups. CHD-EVLP lungs had higher pulmonary vascular resistance and pulmonary artery pressures. Despite increased perfusion pressures, weight gain at both 11 and 23 hours was not different between groups. Perfusate sodium and lactate concentrations were significantly lower in the CHD-EVLP group. CONCLUSION: The addition of continuous hemodialysis to EVLP did not improve graft function up to 24 hours despite improved maintenance of perfusate composition.


Assuntos
Circulação Extracorpórea/métodos , Transplante de Pulmão/métodos , Perfusão/métodos , Diálise Renal/métodos , Transplantes/fisiopatologia , Animais , Feminino , Técnicas In Vitro , Pulmão/fisiopatologia , Sus scrofa , Suínos
12.
Ann Thorac Surg ; 108(2): 499-507, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30872100

RESUMO

BACKGROUND: Myocardial function declines in a time-dependent fashion during ex situ heart perfusion. Cell death and metabolic alterations may contribute to this phenomenon, limiting the safe perfusion period and the potential of ex situ heart perfusion to expand the donor pool. Our aim was to investigate the etiology of myocardial functional decline in ex situ perfused hearts. METHODS: Cardiac function, apoptosis, effectors and markers of cell death, and metabolic function were assessed in healthy pig hearts perfused for 12 hours. These hearts were perfused in nonworking mode or working mode. RESULTS: Cardiac function declined during ex situ heart perfusion regardless of perfusion mode but was significantly better preserved in the hearts perfused in working mode (11-hour cardiac index/1-hour cardiac index: working mode, 33%; nonworking mode, 10%; p = 0.025). The rate of apoptosis was higher in the ex situ perfused hearts compared with in vivo samples (apoptotic cells: in vivo, 0.13%; working mode, 0.54%; nonworking mode, 0.88%; p < 0.001), but the absolute values were low and out of proportion to the decline in function in either group. Myocardial dysfunction at the end of the perfusion interval was partially rescued by delivery of a pyruvate bolus. CONCLUSIONS: A significant decline in myocardial function occurs over time in hearts preserved ex situ that is out of proportion to the magnitude of myocyte cell death present in dysfunctional hearts. Alterations in myocardial substrate utilization during prolonged ex situ heart perfusion may contribute to this phenomenon and represent an avenue to improve donor heart preservation.


Assuntos
Circulação Coronária/fisiologia , Vasos Coronários/fisiopatologia , Transplante de Coração/métodos , Isquemia Miocárdica/fisiopatologia , Miocárdio/metabolismo , Preservação de Órgãos/métodos , Perfusão/efeitos adversos , Animais , Apoptose , Biomarcadores/sangue , Vasos Coronários/patologia , Modelos Animais de Doenças , Feminino , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Miocárdio/patologia , Suínos , Troponina I/sangue
13.
J Vis Exp ; (143)2019 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-30688296

RESUMO

The current standard method for organ preservation (cold storage, CS), exposes the heart to a period of cold ischemia that limits the safe preservation time and increases the risk of adverse post-transplantation outcomes. Moreover, the static nature of CS does not allow for organ evaluation or intervention during the preservation interval. Normothermic ex situ heart perfusion (ESHP) is a novel method for preservation of the donated heart that minimizes cold ischemia by providing oxygenated, nutrient-rich perfusate to the heart. ESHP has been shown to be non-inferior to CS in the preservation of standard-criteria donor hearts and has also facilitated the clinical transplantation of the hearts donated after the circulatory determination of death. Currently, the only available clinical ESHP device perfuses the heart in an unloaded, non-working state, limiting assessments of myocardial performance. Conversely, ESHP in working mode provides the opportunity for comprehensive evaluation of cardiac performance by assessment of functional and metabolic parameters under physiologic conditions. Moreover, earlier experimental studies have suggested that ESHP in working mode may result in improved functional preservation. Here, we describe the protocol for ex situ perfusion of the heart in a large mammal (porcine) model, which is reproducible for different animal models and heart sizes. The software program in this ESHP apparatus allows for real-time and automated control of the pump speed to maintain desired aortic and left atrial pressure and evaluates a variety of functional and electrophysiological parameters with minimal need for supervision/manipulation.


Assuntos
Coração/fisiologia , Metabolismo , Perfusão , Animais , Anti-Inflamatórios/farmacologia , Gasometria , Eletrocardiografia , Coração/diagnóstico por imagem , Fenômenos Magnéticos , Modelos Animais , Miocárdio/metabolismo , Pressão , Silicones , Suínos , Função Ventricular
14.
Am J Transplant ; 19(4): 1024-1036, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30230229

RESUMO

Ex vivo lung perfusion (EVLP) shows promise in ameliorating pretransplant acute lung injury (ALI) and expanding the donor organ pool, but the mechanisms of ex vivo repair remain poorly understood. We aimed to assess the utility of gene expression for characterizing ALI during EVLP. One hundred sixty-nine porcine lung samples were collected in vivo (n = 25), after 0 (n = 11) and 12 (n = 11) hours of cold static preservation (CSP), and after 0 (n = 57), 6 (n = 8), and 12 (n = 57) hours of EVLP, utilizing various ventilation and perfusate strategies. The expression of 53 previously described ALI-related genes was measured and correlated with function and histology. Twenty-eight genes were significantly upregulated and 6 genes downregulated after 12 hours of EVLP. Aggregate gene sets demonstrated differential expression with EVLP (P < .001) but not CSP. Upregulated 28-gene set expression peaked after 6 hours of EVLP, whereas downregulated 6-gene set expression continued to decline after 12 hours. Cellular perfusates demonstrated a greater reduction in downregulated 6-gene set expression vs acellular perfusate (P < .038). Gene set expression correlated with relevant functional and histologic parameters, including P/F ratio (P < .001) and interstitial inflammation (P < .005). Further studies with posttransplant results are warranted to evaluate the clinical significance of this novel molecular approach for assessing organ quality during EVLP.


Assuntos
Regulação da Expressão Gênica , Pulmão/metabolismo , Perfusão , Animais , Biópsia , Estudos de Viabilidade , Perfilação da Expressão Gênica , Técnicas In Vitro , Pulmão/patologia , Preservação de Órgãos , Suínos
15.
Artif Organs ; 42(3): 271-279, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29266272

RESUMO

Normothermic ex vivo lung perfusion (EVLP) is an evolving technology to evaluate function of donor lungs to determine suitability for transplantation. We hypothesize that hypoxic pulmonary vasoconstriction (HPV) during EVLP will provide a more sensitive parameter of lung function to determine donor lung quality for lung transplantation. Eight porcine lungs were procured, and subsequently underwent EVLP with autologous blood and STEEN solution for 10 h. Standard physiologic parameters including dynamic compliance, peak airway pressure, and pulmonary vascular resistance (PVR) remained stable (P = 0.055), mean oxygenation (PO2 /FiO2 ) was 400 ± 18 mm Hg on average throughout perfusion. Response to hypoxia resulted in a robust increase in PVR (ΔPVR) up to 4 h of perfusion, however the HPV response then blunted beyond T6 (P < 0.01). The decrease in HPV response inversely correlated to cytokine concentrations of Interleukin-6 and tumor necrosis factor-α (P < 0.01). Despite acceptable lung oxygenation and standard physiologic parameters during 10 h of EVLP, there is a subclinical deterioration of lung function. HPV challenges can be performed during EVLP as a simple and more sensitive index of pulmonary vascular reactivity.


Assuntos
Hipóxia/metabolismo , Inflamação/metabolismo , Pulmão/irrigação sanguínea , Pulmão/fisiologia , Perfusão/métodos , Resistência Vascular , Vasoconstrição , Animais , Desenho de Equipamento , Feminino , Transplante de Pulmão , Preservação de Órgãos , Oxigênio/metabolismo , Perfusão/efeitos adversos , Perfusão/instrumentação , Suínos
16.
J Heart Lung Transplant ; 37(4): 520-530, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29103845

RESUMO

BACKGROUND: Normothermic ex-vivo lung perfusion (EVLP) using positive pressure ventilation (PPV) and both acellular and red blood cell (RBC)-based perfusate solutions have increased the rate of donor organ utilization. We sought to determine whether a negative pressure ventilation (NPV) strategy would improve donor lung assessment during EVLP. METHODS: Thirty-two pig lungs were perfused ex vivo for 12 hours in a normothermic state, and were allocated equally to 4 groups according to the mode of ventilation (positive pressure ventilation [PPV] vs NPV) and perfusate composition (acellular vs RBC). The impact of ventilation strategy on the preservation of 6 unutilized human donor lungs was also evaluated. Physiologic parameters, cytokine profiles, lung injury, bullae and edema formation were compared between treatment groups. RESULTS: Perfused lungs demonstrated acceptable oxygenation (partial pressure of arterial oxygen/fraction of inspired oxygen ratio >350 mm Hg) and physiologic parameters. However, there was less generation of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6 and interleukin-8) in human and pig lungs perfused, irrespective of perfusate solution used, when comparing NPV with PPV (p < 0.05), and a reduction in bullae formation with an NPV modality (p = 0.02). Pig lungs developed less edema with NPV (p < 0.01), and EVLP using an acellular perfusate solution had greater edema formation, irrespective of ventilation strategy (p = 0.01). Interestingly, human lungs perfused with NPV developed negative edema, or "drying" (p < 0.01), and lower composite acute lung injury (p < 0.01). CONCLUSIONS: Utilization of an NPV strategy during extended EVLP is associated with significantly less inflammation, and lung injury, irrespective of perfusate solution composition.


Assuntos
Circulação Extracorpórea/métodos , Transplante de Pulmão , Preservação de Órgãos/métodos , Pneumonia/prevenção & controle , Edema Pulmonar/prevenção & controle , Respiração Artificial/métodos , Adolescente , Adulto , Idoso , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas de Cultura de Órgãos , Soluções para Preservação de Órgãos , Suínos , Respiradores de Pressão Negativa
17.
ASAIO J ; 63(5): 672-678, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28234641

RESUMO

Normothermic ex vivo lung perfusion (EVLP) allows for assessment and reconditioning of donor lungs. Although a leukocyte filter (LF) is routinely incorporated into the EVLP circuit; its efficacy remains to be determined. Twelve pig lungs were perfused and ventilated ex vivo in a normothermic state for 12 hours. Lungs (n = 3) were allocated to four groups according to perfusate composition and the presence or absence of a LF in the circuit (acellular ± LF, cellular ± LF). Acceptable physiologic lung parameters were achieved during EVLP; however, increased amounts of pro-inflammatory cytokines (TNF-α and IL-6) and leukocytes in the perfusate were observed despite the presence or absence of a LF. Analysis of cells washed off the LF demonstrates that it trapped leukocytes although being ineffective throughout perfusion as it became saturated over 12 hours of EVLP. We conclude that there is no objective evidence to support the routine incorporation of a LF during EVLP as it does not provide further benefit and its removal does not appear to cause harm. The lack of hypothesized benefit to a LF may be because of the saturation of the LF with donor leukocytes, leading to similar amounts of circulating leukocytes still present in the perfusate with and without a LF.


Assuntos
Transplante de Pulmão , Perfusão/métodos , Animais , Citocinas/sangue , Filtração , Leucócitos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...