Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 29(60): e202302220, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37534701

RESUMO

Fluorine labeling of ribonucleic acids (RNA) in conjunction with 19 F NMR spectroscopy has emerged as a powerful strategy for spectroscopic analysis of RNA structure and dynamics, and RNA-ligand interactions. This study presents the first syntheses of 2'-OCF3 guanosine and uridine phosphoramidites, their incorporation into oligoribonucleotides by solid-phase synthesis and a comprehensive study of their properties. NMR spectroscopic analysis showed that the 2'-OCF3 modification is associated with preferential C2'-endo conformation of the U and G ribose in single-stranded RNA. When paired to the complementary strand, slight destabilization of the duplex caused by the modification was revealed by UV melting curve analysis. Moreover, the power of the 2'-OCF3 label for NMR spectroscopy is demonstrated by dissecting RNA pseudoknot folding and its binding to a small molecule. Furthermore, the 2'-OCF3 modification has potential for applications in therapeutic oligonucleotides. To this end, three 2'-OCF3 modified siRNAs were tested in silencing of the BASP1 gene which indicated enhanced performance for one of them. Importantly, together with earlier work, the present study completes the set of 2'-OCF3 nucleoside phosphoramidites to all four standard nucleobases (A, U, C, G) and hence enables applications that utilize the favorable properties of the 2'-OCF3 group without any restrictions in placing the modification into the RNA target sequence.


Assuntos
Oligonucleotídeos , RNA , RNA/química , RNA Interferente Pequeno/química , Oligonucleotídeos/química , Conformação Molecular , Espectroscopia de Ressonância Magnética , Oligorribonucleotídeos , Conformação de Ácido Nucleico
2.
Nucleic Acids Res ; 50(1): 473-489, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34904663

RESUMO

Post-transcriptional modifications are added to ribosomal RNAs (rRNAs) to govern ribosome biogenesis and to fine-tune protein biosynthesis. In Escherichia coli and related bacteria, RlhA uniquely catalyzes formation of a 5-hydroxycytidine (ho5C) at position 2501 of 23S rRNA. However, the molecular and biological functions as well as the regulation of ho5C2501 modification remain unclear. We measured growth curves with the modification-deficient ΔrlhA strain and quantified the extent of the modification during different conditions by mass spectrometry and reverse transcription. The levels of ho5C2501 in E. coli ribosomes turned out to be highly dynamic and growth phase-dependent, with the most effective hydroxylation yields observed in the stationary phase. We demonstrated a direct effect of ho5C2501 on translation efficiencies in vitro and in vivo. High ho5C2501 levels reduced protein biosynthesis which however turned out to be beneficial for E. coli for adapting to oxidative stress. This functional advantage was small under optimal conditions or during heat or cold shock, but becomes pronounced in the presence of hydrogen peroxide. Taken together, these data provided first functional insights into the role of this unique 23S rRNA modification for ribosome functions and bacterial growth under oxidative stress.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , RNA Bacteriano/metabolismo , RNA Ribossômico 23S/metabolismo , Ribossomos/metabolismo , Estresse Oxidativo , Processamento Pós-Transcricional do RNA
3.
Nucleic Acids Res ; 49(8): 4281-4293, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33856457

RESUMO

Deazapurine nucleosides such as 3-deazaadenosine (c3A) are crucial for atomic mutagenesis studies of functional RNAs. They were the key for our current mechanistic understanding of ribosomal peptide bond formation and of phosphodiester cleavage in recently discovered small ribozymes, such as twister and pistol RNAs. Here, we present a comprehensive study on the impact of c3A and the thus far underinvestigated 3-deazaguanosine (c3G) on RNA properties. We found that these nucleosides can decrease thermodynamic stability of base pairing to a significant extent. The effects are much more pronounced for 3-deazapurine nucleosides compared to their constitutional isomers of 7-deazapurine nucleosides (c7G, c7A). We furthermore investigated base pair opening dynamics by solution NMR spectroscopy and revealed significantly enhanced imino proton exchange rates. Additionally, we solved the X-ray structure of a c3A-modified RNA and visualized the hydration pattern of the minor groove. Importantly, the characteristic water molecule that is hydrogen-bonded to the purine N3 atom and always observed in a natural double helix is lacking in the 3-deazapurine-modified counterpart. Both, the findings by NMR and X-ray crystallographic methods hence provide a rationale for the reduced pairing strength. Taken together, our comparative study is a first major step towards a comprehensive understanding of this important class of nucleoside modifications.


Assuntos
Estabilidade de RNA , RNA/química , Tubercidina/química , Pareamento de Bases , Cristalografia por Raios X , Mutagênese , Purinas/química , RNA/genética , Termodinâmica
4.
Angew Chem Int Ed Engl ; 59(17): 6881-6886, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-31999864

RESUMO

Temporal information about cellular RNA populations is essential to understand the functional roles of RNA. We have developed the hydrazine/NH4 Cl/OsO4 -based conversion of 6-thioguanosine (6sG) into A', where A' constitutes a 6-hydrazino purine derivative. A' retains the Watson-Crick base-pair mode and is efficiently decoded as adenosine in primer extension assays and in RNA sequencing. Because 6sG is applicable to metabolic labeling of freshly synthesized RNA and because the conversion chemistry is fully compatible with the conversion of the frequently used metabolic label 4-thiouridine (4sU) into C, the combination of both modified nucleosides in dual-labeling setups enables high accuracy measurements of RNA decay. This approach, termed TUC-seq DUAL, uses the two modified nucleosides in subsequent pulses and their simultaneous detection, enabling mRNA-lifetime evaluation with unprecedented precision.


Assuntos
Guanosina/análogos & derivados , Análise de Sequência de RNA/métodos , Tionucleosídeos/química , Sequência de Bases , Guanosina/química , Hidrazinas/química , Estabilidade de RNA , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coloração e Rotulagem
5.
Chem Sci ; 11(41): 11322-11330, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34094374

RESUMO

New RNA modifications are needed to advance our toolbox for targeted manipulation of RNA. In particular, the development of high-performance reporter groups facilitating spectroscopic analysis of RNA structure and dynamics, and of RNA-ligand interactions has attracted considerable interest. To this end, fluorine labeling in conjunction with 19F-NMR spectroscopy has emerged as a powerful strategy. Appropriate probes for RNA previously focused on single fluorine atoms attached to the 5-position of pyrimidine nucleobases or at the ribose 2'-position. To increase NMR sensitivity, trifluoromethyl labeling approaches have been developed, with the ribose 2'-SCF3 modification being the most prominent one. A major drawback of the 2'-SCF3 group, however, is its strong impact on RNA base pairing stability. Interestingly, RNA containing the structurally related 2'-OCF3 modification has not yet been reported. Therefore, we set out to overcome the synthetic challenges toward 2'-OCF3 labeled RNA and to investigate the impact of this modification. We present the syntheses of 2'-OCF3 adenosine and cytidine phosphoramidites and their incorporation into oligoribonucleotides by solid-phase synthesis. Importantly, it turns out that the 2'-OCF3 group has only a slight destabilizing effect when located in double helical regions which is consistent with the preferential C3'-endo conformation of the 2'-OCF3 ribose as reflected in the 3 J (H1'-H2') coupling constants. Furthermore, we demonstrate the exceptionally high sensitivity of the new label in 19F-NMR analysis of RNA structure equilibria and of RNA-small molecule interactions. The study is complemented by a crystal structure at 0.9 Å resolution of a 27 nt hairpin RNA containing a single 2'-OCF3 group that well integrates into the minor groove. The new label carries high potential to outcompete currently applied fluorine labels for nucleic acid NMR spectroscopy because of its significantly advanced performance.

6.
Angew Chem Int Ed Engl ; 56(50): 15954-15958, 2017 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-29098759

RESUMO

The pistol RNA motif represents a new class of self-cleaving ribozymes of yet unknown biological function. Our recent crystal structure of a pre-catalytic state of this RNA shows guanosine G40 and adenosine A32 close to the G53-U54 cleavage site. While the N1 of G40 is within 3.4 Šof the modeled G53 2'-OH group that attacks the scissile phosphate, thus suggesting a direct role in general acid-base catalysis, the function of A32 is less clear. We present evidence from atom-specific mutagenesis that neither the N1 nor N3 base positions of A32 are involved in catalysis. By contrast, the ribose 2'-OH of A32 seems crucial for the proper positioning of G40 through a H-bond network that involves G42 as a bridging unit between A32 and G40. We also found that disruption of the inner-sphere coordination of the active-site Mg2+ cation to N7 of G33 makes the ribozyme drastically slower. A mechanistic proposal is suggested, with A32 playing a structural role and hydrated Mg2+ playing a catalytic role in cleavage.


Assuntos
Adenosina/metabolismo , Biocatálise , Magnésio/metabolismo , RNA Catalítico/genética , RNA Catalítico/metabolismo , Adenosina/química , Domínio Catalítico , Magnésio/química , Mutagênese , Conformação Proteica , RNA Catalítico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...