Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003592

RESUMO

Cerebellar atrophy (CA) is a frequent neuroimaging finding in paediatric neurology, usually associated with cerebellar ataxia. The list of genes involved in hereditary forms of CA is continuously growing and reveals its genetic complexity. We investigated ten cases with early-onset cerebellar involvement with and without ataxia by exome sequencing or by a targeted panel with 363 genes involved in ataxia or spastic paraplegia. Novel variants were investigated by in silico or experimental approaches. Seven probands carry causative variants in well-known genes associated with CA or cerebellar hypoplasia: SETX, CACNA1G, CACNA1A, CLN6, CPLANE1, and TBCD. The remaining three cases deserve special attention; they harbour variants in MAST1, PI4KA and CLK2 genes. MAST1 is responsible for an ultrarare condition characterised by global developmental delay and cognitive decline; our index case added ataxia to the list of concomitant associated symptoms. PIK4A is mainly related to hypomyelinating leukodystrophy; our proband presented with pure spastic paraplegia and normal intellectual capacity. Finally, in a patient who suffers from mild ataxia with oculomotor apraxia, the de novo novel CLK2 c.1120T>C variant was found. The protein expression of the mutated protein was reduced, which may indicate instability that would affect its kinase activity.


Assuntos
Ataxia Cerebelar , Doenças Cerebelares , Doenças Neurodegenerativas , Paraplegia Espástica Hereditária , Criança , Humanos , Heterogeneidade Genética , Mutação , Ataxia Cerebelar/genética , Ataxia Cerebelar/diagnóstico , Ataxia , Fenótipo , Paraplegia Espástica Hereditária/genética , Paraplegia , Linhagem , Atrofia , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Membrana/genética
2.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233161

RESUMO

Our clinical series comprises 124 patients with movement disorders (MDs) and/or ataxia with cerebellar atrophy (CA), many of them showing signs of neurodegeneration with brain iron accumulation (NBIA). Ten NBIA genes are accepted, although isolated cases compatible with abnormal brain iron deposits are known. The patients were evaluated using standardised clinical assessments of ataxia and MDs. First, NBIA genes were analysed by Sanger sequencing and 59 patients achieved a diagnosis, including the detection of the founder mutation PANK2 p.T528M in Romani people. Then, we used a custom panel MovDisord and/or exome sequencing; 29 cases were solved with a great genetic heterogeneity (34 different mutations in 23 genes). Three patients presented brain iron deposits with Fe-sensitive MRI sequences and mutations in FBXO7, GLB1, and KIF1A, suggesting an NBIA-like phenotype. Eleven patients showed very early-onset ataxia and CA with cortical hyperintensities caused by mutations in ITPR1, KIF1A, SPTBN2, PLA2G6, PMPCA, and PRDX3. The novel variants were investigated by structural modelling, luciferase analysis, transcript/minigenes studies, or immunofluorescence assays. Our findings expand the phenotypes and the genetics of MDs and ataxias with early-onset CA and cortical hyperintensities and highlight that the abnormal brain iron accumulation or early cerebellar gliosis may resembling an NBIA phenotype.


Assuntos
Transtornos dos Movimentos , Doenças Neurodegenerativas , Ataxia/genética , Encéfalo , Humanos , Ferro , Cinesinas , Mutação , Doenças Neurodegenerativas/genética , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/genética
4.
Antioxidants (Basel) ; 9(10)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092153

RESUMO

The syndromes of neurodegeneration with brain iron accumulation (NBIA) encompass a group of invalidating and progressive rare diseases that share the abnormal accumulation of iron in the basal ganglia. The onset of NBIA disorders ranges from infancy to adulthood. Main clinical signs are related to extrapyramidal features (dystonia, parkinsonism and choreoathetosis), and neuropsychiatric abnormalities. Ten NBIA forms are widely accepted to be caused by mutations in the genes PANK2, PLA2G6, WDR45, C19ORF12, FA2H, ATP13A2, COASY, FTL1, CP, and DCAF17. Nonetheless, many patients remain without a conclusive genetic diagnosis, which shows that there must be additional as yet undiscovered NBIA genes. In line with this, isolated cases of known monogenic disorders, and also, new genetic diseases, which present with abnormal brain iron phenotypes compatible with NBIA, have been described. Several pathways are involved in NBIA syndromes: iron and lipid metabolism, mitochondrial dynamics, and autophagy. However, many neurodegenerative conditions share features such as mitochondrial dysfunction and oxidative stress, given the bioenergetics requirements of neurons. This review aims to describe the existing link between the classical ten NBIA forms by examining their connection with mitochondrial impairment as well as oxidative stress and neuroinflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...