Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 380(6643): eabn3943, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37104599

RESUMO

Zoonomia is the largest comparative genomics resource for mammals produced to date. By aligning genomes for 240 species, we identify bases that, when mutated, are likely to affect fitness and alter disease risk. At least 332 million bases (~10.7%) in the human genome are unusually conserved across species (evolutionarily constrained) relative to neutrally evolving repeats, and 4552 ultraconserved elements are nearly perfectly conserved. Of 101 million significantly constrained single bases, 80% are outside protein-coding exons and half have no functional annotations in the Encyclopedia of DNA Elements (ENCODE) resource. Changes in genes and regulatory elements are associated with exceptional mammalian traits, such as hibernation, that could inform therapeutic development. Earth's vast and imperiled biodiversity offers distinctive power for identifying genetic variants that affect genome function and organismal phenotypes.


Assuntos
Eutérios , Evolução Molecular , Animais , Feminino , Humanos , Sequência Conservada/genética , Eutérios/genética , Genoma Humano
2.
Artigo em Inglês | MEDLINE | ID: mdl-35321853

RESUMO

Mechanistic evaluations of processes that underlie organism-level physiology often require reductionist approaches. Dermal fibroblasts offer one such approach. These cells are easily obtained from minimally invasive skin biopsy, making them appropriate for the study of protected and/or logistically challenging species. Cell culture approaches permit extensive and fine-scale sampling regimes as well as gene manipulation techniques that are not feasible in vivo. Fibroblast isolation and culture protocols are outlined here for primary cells, and the benefits and drawbacks of immortalization are discussed. We show examples of physiological metrics that can be used to characterize primary cells (oxygen consumption, translation, proliferation) and readouts that can be informative in understanding cell-level responses to environmental stress (lactate production, heat shock protein induction). Importantly, fibroblasts may display fidelity to whole animal physiological phenotypes, facilitating their study. Fibroblasts from Antarctic Weddell seals show greater resilience to low temperatures and hypoxia exposure than fibroblasts from humans or rats. Fibroblast oxygen consumption rates are not affected by temperature stress in the heat-tolerant camel, whereas similar temperature exposures depress mitochondrial metabolism in fibroblasts from rhinoceros. Finally, dermal fibroblasts from a hibernator, the meadow jumping mouse, better resist experimental cooling than a fibroblast line from the laboratory mouse, with the hibernator demonstrating a greater maintenance of homeostatic processes such as protein translation. These results exemplify the parallels that can be drawn between fibroblast physiology and expectations in vivo, and provide evidence for the power of fibroblasts as a model system to understand comparative physiology and biomedicine.


Assuntos
Fibroblastos , Fisiologia Comparada , Animais , Células Cultivadas , Fibroblastos/metabolismo , Proteínas de Choque Térmico/metabolismo , Camundongos , Modelos Teóricos , Ratos , Pele/metabolismo
3.
Commun Biol ; 5(1): 140, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177770

RESUMO

The Weddell seal (Leptonychotes weddellii) thrives in its extreme Antarctic environment. We generated the Weddell seal genome assembly and a high-quality annotation to investigate genome-wide evolutionary pressures that underlie its phenotype and to study genes implicated in hypoxia tolerance and a lipid-based metabolism. Genome-wide analyses included gene family expansion/contraction, positive selection, and diverged sequence (acceleration) compared to other placental mammals, identifying selection in coding and non-coding sequence in five pathways that may shape cardiovascular phenotype. Lipid metabolism as well as hypoxia genes contained more accelerated regions in the Weddell seal compared to genomic background. Top-significant genes were SUMO2 and EP300; both regulate hypoxia inducible factor signaling. Liver expression of four genes with the strongest acceleration signals differ between Weddell seals and a terrestrial mammal, sheep. We also report a high-density lipoprotein-like particle in Weddell seal serum not present in other mammals, including the shallow-diving harbor seal.


Assuntos
Estudo de Associação Genômica Ampla , Genoma , Focas Verdadeiras/genética , Animais , Regiões Antárticas , Regulação da Expressão Gênica/fisiologia , Metabolismo dos Lipídeos , Oxigênio/metabolismo , Filogenia , Especificidade da Espécie
4.
Compr Physiol ; 11(3): 1979-2015, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34190338

RESUMO

Continuous physiological measurements collected in field settings are essential to understand baseline, free-ranging physiology, physiological range and variability, and the physiological responses of organisms to disturbances. This article presents a current summary of the available technologies to continuously measure the direct physiological parameters in the field at high-resolution/instantaneous timescales from freely behaving animals. There is a particular focus on advantages versus disadvantages of available methods as well as emerging technologies "on the horizon" that may have been validated in captive or laboratory-based scenarios but have yet to be applied in the wild. Systems to record physiological variables from free-ranging animals are reviewed, including radio (VHF/UFH) telemetry, acoustic telemetry, and dataloggers. Physiological parameters that have been continuously measured in the field are addressed in seven sections including heart rate and electrocardiography (ECG); electromyography (EMG); electroencephalography (EEG); body temperature; respiratory, blood, and muscle oxygen; gastric pH and motility; and blood pressure and flow. The primary focal sections are heart rate and temperature as these can be, and have been, extensively studied in free-ranging organisms. Predicted aspects of future innovation in physiological monitoring are also discussed. The article concludes with an overview of best practices and points to consider regarding experimental designs, cautions, and effects on animals. © 2021 American Physiological Society. Compr Physiol 11:1979-2015, 2021.


Assuntos
Eletrocardiografia , Telemetria , Animais , Pressão Sanguínea , Eletroencefalografia , Frequência Cardíaca
5.
Nat Commun ; 12(1): 3108, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035265

RESUMO

The mammalian brain is highly vulnerable to oxygen deprivation, yet the mechanism underlying the brain's sensitivity to hypoxia is incompletely understood. Hypoxia induces accumulation of hydrogen sulfide, a gas that inhibits mitochondrial respiration. Here, we show that, in mice, rats, and naturally hypoxia-tolerant ground squirrels, the sensitivity of the brain to hypoxia is inversely related to the levels of sulfide:quinone oxidoreductase (SQOR) and the capacity to catabolize sulfide. Silencing SQOR increased the sensitivity of the brain to hypoxia, whereas neuron-specific SQOR expression prevented hypoxia-induced sulfide accumulation, bioenergetic failure, and ischemic brain injury. Excluding SQOR from mitochondria increased sensitivity to hypoxia not only in the brain but also in heart and liver. Pharmacological scavenging of sulfide maintained mitochondrial respiration in hypoxic neurons and made mice resistant to hypoxia. These results illuminate the critical role of sulfide catabolism in energy homeostasis during hypoxia and identify a therapeutic target for ischemic brain injury.


Assuntos
Lesões Encefálicas/metabolismo , Encéfalo/metabolismo , Sulfeto de Hidrogênio/metabolismo , Quinona Redutases/metabolismo , Animais , Encéfalo/patologia , Lesões Encefálicas/genética , Células Cultivadas , Feminino , Hipóxia , Masculino , Potencial da Membrana Mitocondrial , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Mitocôndrias/metabolismo , NAD/metabolismo , Quinona Redutases/genética , Interferência de RNA , Ratos Sprague-Dawley
6.
Mol Genet Metab ; 133(1): 83-93, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33752971

RESUMO

Leigh syndrome is a severe mitochondrial neurodegenerative disease with no effective treatment. In the Ndufs4-/- mouse model of Leigh syndrome, continuously breathing 11% O2 (hypoxia) prevents neurodegeneration and leads to a dramatic extension (~5-fold) in lifespan. We investigated the effect of hypoxia on the brain metabolism of Ndufs4-/- mice by studying blood gas tensions and metabolite levels in simultaneously sampled arterial and cerebral internal jugular venous (IJV) blood. Relatively healthy Ndufs4-/- and wildtype (WT) mice breathing air until postnatal age ~38 d were compared to Ndufs4-/- and WT mice breathing air until ~38 days old followed by 4-weeks of breathing 11% O2. Compared to WT control mice, Ndufs4-/- mice breathing air have reduced brain O2 consumption as evidenced by an elevated partial pressure of O2 in IJV blood (PijvO2) despite a normal PO2 in arterial blood, and higher lactate/pyruvate (L/P) ratios in IJV plasma revealed by metabolic profiling. In Ndufs4-/- mice, hypoxia treatment normalized the cerebral venous PijvO2 and L/P ratios, and decreased levels of nicotinate in IJV plasma. Brain concentrations of nicotinamide adenine dinucleotide (NAD+) were lower in Ndufs4-/- mice breathing air than in WT mice, but preserved at WT levels with hypoxia treatment. Although mild hypoxia (17% O2) has been shown to be an ineffective therapy for Ndufs4-/- mice, we find that when combined with nicotinic acid supplementation it provides a modest improvement in neurodegeneration and lifespan. Therapies targeting both brain hyperoxia and NAD+ deficiency may hold promise for treating Leigh syndrome.


Assuntos
Encéfalo/metabolismo , Complexo I de Transporte de Elétrons/genética , Doença de Leigh/metabolismo , NAD/genética , Oxigênio/metabolismo , Animais , Encéfalo/patologia , Hipóxia Celular/fisiologia , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Doença de Leigh/genética , Doença de Leigh/terapia , Metabolômica , Camundongos , Mitocôndrias , NAD/deficiência , Doenças Neurodegenerativas , Respiração/genética
7.
J Comp Physiol B ; 190(6): 811-822, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32815023

RESUMO

Immune responses to nitrogen gas bubbles, particularly activation of inflammation via the complement cascade, have been linked to the development of symptoms and damage associated with decompression sickness (DCS) in humans. Marine mammals were long thought not to be susceptible to such dive-related injury, yet evidence of DCS-like injury and new models of tissue nitrogen super-saturation suggest that bubbles may routinely form. As such, it is possible that marine mammals have protective adaptations that allow them to deal with a certain level of bubble formation during normal dives, without acute adverse effects. This work evaluated the complement response, indicative of inflammation, to in vitro nitrogen bubble exposures in several marine mammal species to assess whether a less-responsive immune system serves a protective role against DCS-like injury in these animals. Serum samples from beluga (Delphinapterus leucas), and harbor seals (Phoca vitulina) (relatively shallow divers) and deep diving narwhal (Monodon monoceros), and Weddell seals (Leptonychotes weddellii) were exposed to nitrogen bubbles in vitro. Complement activity was evaluated by measuring changes in the terminal protein C5a in serum, and results suggest marine mammal complement is less sensitive to gas bubbles than human complement, but the response varies between species. Species-specific differences may be related to dive ability, and suggest moderate or shallow divers may be more susceptible to DCS-like injury. This information is an important consideration in assessing the impact of changing dive behaviors in response to anthropogenic stressors, startle responses, or changing environmental conditions that affect prey depth distributions.


Assuntos
Beluga/sangue , Complemento C5a/análise , Focas Verdadeiras/sangue , Baleias/sangue , Animais , Beluga/imunologia , Ativação do Complemento/efeitos dos fármacos , Complemento C5a/imunologia , Nitrogênio/farmacologia , Focas Verdadeiras/imunologia , Baleias/imunologia
8.
Integr Comp Biol ; 60(6): 1414-1424, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-32559283

RESUMO

Diving physiology has received considerable scientific attention as it is a central element of the extreme phenotype of marine mammals. Many scientific discoveries have illuminated physiological mechanisms supporting diving, such as massive, internally bound oxygen stores and dramatic cardiovascular regulation. However, the cellular and molecular mechanisms that support the diving phenotype remain mostly unexplored as logistic and legal restrictions limit the extent of scientific manipulation possible. With next-generation sequencing (NGS) tools becoming more widespread and cost-effective, there are new opportunities to explore the diving phenotype. Genomic investigations come with their own challenges, particularly those including cross-species comparisons. Studying the regulatory pathways that underlie diving mammal ontogeny could provide a window into the comparative physiology of hypoxia tolerance. Specifically, in pinnipeds, which shift from terrestrial pups to elite diving adults, there is potential to characterize the transcriptional, epigenetic, and posttranslational differences between contrasting phenotypes while leveraging a common genome. Here we review the current literature detailing the maturation of the diving phenotype in pinnipeds, which has primarily been explored via biomarkers of metabolic capability including antioxidants, muscle fiber typing, and key aerobic and anaerobic metabolic enzymes. We also discuss how NGS tools have been leveraged to study phenotypic shifts within species through ontogeny, and how this approach may be applied to investigate the biochemical and physiological mechanisms that develop as pups become elite diving adults. We conclude with a specific example of the Antarctic Weddell seal by overlapping protein biomarkers with gene regulatory microRNA datasets.


Assuntos
Mergulho , Focas Verdadeiras , Animais , Genômica , Hipóxia/genética , Fibras Musculares Esqueléticas
9.
J Appl Physiol (1985) ; 128(5): 1439-1446, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32324472

RESUMO

Marine mammals have highly specialized physiology, exhibited in many species by extreme breath-holding capabilities that allow deep dives and extended submergence. Cardiovascular control and cell-level hypoxia tolerance are key features of this phenotype. Identifying genomic signatures tied to physiology will be valuable in understanding these natural model species, which may generate translational opportunities to human diseases arising from hypoxic stress or tissue injury. Genomic analyses have now been conducted in dolphins, river dolphins, minke whales, bowhead whales, and polar bears, with multispecies studies exploring evolutionary signals across marine mammal lineages, encompassing extinct and extant divers. Single-species genome studies for sirenians do not yet exist. Extant marine mammals arose in three lineages from separate aquatic recolonizations. Their physiological specializations, along with these independent origins create an interesting case to examine convergent evolution. Although molecular mechanisms of hypoxia tolerance are not universally apparent across marine mammal genomic studies, altered evolutionary rates have been identified for genes linked to oxygen binding and transport (e.g., MB, HBA, and HBB), blood pressure control (e.g., endothelin pathway genes), and cell protection in multiple species. Despite convergent phenotypes across clades, instances of identical molecular convergence have been uncommon. Given the inherent logistical and regulatory difficulties associated with functional genetic experiments in marine mammals, several avenues of further investigation are suggested to enable validation of candidate genes for hypoxia tolerance: leveraging phylogeny to better understand convergent phenotypes; ontogenic studies to identify regulation of key genes underlying the elite, adult, hypoxia-tolerant physiology; and cell culture manipulations to understand gene function.


Assuntos
Mergulho , Animais , Cetáceos/genética , Hipóxia/genética , Fenótipo , Filogenia
10.
J Exp Biol ; 222(Pt 12)2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31171605

RESUMO

Seals experience repeated bouts of ischemia-reperfusion while diving, potentially exposing their tissues to increased oxidant generation and thus oxidative damage and accelerated aging. We contrasted markers of oxidative damage with antioxidant profiles across age and sex for propulsive (longissismus dorsi) and maneuvering (pectoralis) muscles of Weddell seals to determine whether previously observed morphological senescence is associated with oxidative stress. In longissismus dorsi, old (age 17-26 years) seals exhibited a nearly 2-fold increase in apoptosis over young (age 9-16 years) seals. There was no evidence of age-associated changes in lipid peroxidation or enzymatic antioxidant profiles. In pectoralis, 4-hydroxynonenal-Lys (4-HNE-Lys) levels increased 1.5-fold in old versus young seals, but lipid hydroperoxide levels and apoptotic index did not vary with age. Glutathione peroxidase activity was 1.5-fold higher in pectoralis of old versus young animals, but no other antioxidants changed with age in this muscle. With respect to sex, no differences in lipid hydroperoxides or apoptosis were observed in either muscle. Males had higher HSP70 expression (1.4-fold) and glutathione peroxidase activity (1.3-fold) than females in longissismus dorsi, although glutathione reductase activity was 1.4-fold higher in females. No antioxidants varied with sex in pectoralis. These results show that apoptosis is not associated with oxidative stress in aged Weddell seal muscles. Additionally, the data suggest that adult seals utilize sex-specific antioxidant strategies in longissismus dorsi but not pectoralis to protect skeletal muscles from oxidative damage.


Assuntos
Envelhecimento , Apoptose/fisiologia , Músculo Esquelético/fisiologia , Estresse Oxidativo/fisiologia , Focas Verdadeiras/fisiologia , Animais , Feminino , Masculino , Músculos Peitorais/fisiologia
11.
Am J Physiol Regul Integr Comp Physiol ; 316(6): R704-R715, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30892912

RESUMO

Nitric oxide (NO) is a potent vasodilator, which improves perfusion and oxygen delivery during tissue hypoxia in terrestrial animals. The vertebrate dive response involves vasoconstriction in select tissues, which persists despite profound hypoxia. Using tissues collected from Weddell seals at necropsy, we investigated whether vasoconstriction is aided by downregulation of local hypoxia signaling mechanisms. We focused on NO-soluble guanylyl cyclase (GC)-cGMP signaling, a well-known vasodilatory transduction pathway. Seals have a lower GC protein abundance, activity, and capacity to respond to NO stimulation than do terrestrial mammals. In seal lung homogenates, GC produced less cGMP (20.1 ± 3.7 pmol·mg protein-1·min-1) than the lungs of dogs (-80 ± 144 pmol·mg protein-1·min-1 less than seals), sheep (-472 ± 96), rats (-664 ± 104) or mice (-1,160 ± 104, P < 0.0001). Amino acid sequences of the GC enzyme α-subunits differed between seals and terrestrial mammals, potentially affecting their structure and function. Vasoconstriction in diving Weddell seals is not consistent across tissues; perfusion is maintained in the brain and heart but decreased in other organs such as the kidney. A NO donor increased median GC activity 49.5-fold in the seal brain but only 27.4-fold in the kidney, consistent with the priority of cerebral perfusion during diving. Nos3 expression was high in the seal brain, which could improve NO production and vasodilatory potential. Conversely, Pde5a expression was high in the seal renal artery, which may increase cGMP breakdown and vasoconstriction in the kidney. Taken together, the results of this study suggest that alterations in the NO-cGMP pathway facilitate the diving response.


Assuntos
Encéfalo/irrigação sanguínea , Caniformia/metabolismo , Circulação Cerebrovascular , Mergulho , Guanilato Ciclase/metabolismo , Rim/irrigação sanguínea , Circulação Renal , Vasoconstrição , Animais , Caniformia/genética , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Regulação Enzimológica da Expressão Gênica , Guanilato Ciclase/genética , Homeostase , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Sistemas do Segundo Mensageiro , Especificidade da Espécie
12.
Invest Ophthalmol Vis Sci ; 60(1): 134-146, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30629727

RESUMO

Purpose: Glaucoma, a leading cause of blindness worldwide, often remains undetected until irreversible vision loss has occurred. Treatments focus on lowering intraocular pressure (IOP), the only modifiable and readily measurable risk factor. However, IOP can vary and does not always predict disease progression. MicroRNAs (miRNAs) are promising biomarkers. They are abundant and stable in biological fluids, including plasma and aqueous humor (AqH). We aimed to identify differentially expressed miRNAs in AqH and plasma from glaucoma, exfoliation syndrome (XFS), and control subjects. Methods: Plasma and AqH from two ethnic cohorts were harvested from glaucoma or XFS (often associated with glaucoma, n = 33) and control (n = 31) patients undergoing elective surgery. A custom miRNA array measured 372 miRNAs. Molecular target prediction and pathway analysis were performed with Ingenuity Pathway Analysis (IPA) and DIANA bioinformatical tools. Results: Levels of miRNAs in plasma, a readily accessible biomarker source, correlated with miRNA levels in AqH. Twenty circulating miRNAs were at least 1.5-fold higher in glaucoma or XFS patients than in controls across two ethnic cohorts: miR-4667-5p (P = 4.1 × 10-5), miR-99b-3p (P = 4.8 × 10-5), miR-637 (P = 5.1 × 10-5), miR-4490 (P = 5.7 × 10-5), miR-1253 (P = 6.0 × 10-5), miR-3190-3p (P = 3.1 × 10-4), miR-3173-3p (P = 0.001), miR-608 (P = 0.001), miR-4725-3p (P = 0.002), miR-4448 (P = 0.002), and miR-323b-5p (P = 0.002), miR-4538 (P = 0.003), miR-3913-3p (P = 0.003), miR-3159 (P = 0.003), miR-4663 (P = 0.003), miR-4767 (P = 0.003), miR-4724-5p (P = 0.003), miR-1306-5p (P = 0.003), miR-181b-3p (P = 0.004), and miR-433-3p (P = 0.004). miR-637, miR-1306-5p, and miR-3159, in combination, allowed discrimination between glaucoma patients and control subjects (AUC = 0.91 ± 0.008, sensitivity 85.0%, specificity 87.5%). Conclusions: These results identify specific miRNAs as potential biomarkers and provide insight into the molecular processes underlying glaucoma.


Assuntos
Humor Aquoso/metabolismo , Biomarcadores/sangue , Síndrome de Exfoliação/sangue , Glaucoma de Ângulo Aberto/sangue , MicroRNAs/sangue , Idoso , Idoso de 80 Anos ou mais , Povo Asiático/etnologia , Síndrome de Exfoliação/etnologia , Síndrome de Exfoliação/cirurgia , Feminino , Perfilação da Expressão Gênica , Glaucoma de Ângulo Aberto/etnologia , Glaucoma de Ângulo Aberto/cirurgia , Humanos , Pressão Intraocular , Japão/epidemiologia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade , Estados Unidos/epidemiologia , População Branca/etnologia
13.
Circulation ; 139(6): 815-827, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30586713

RESUMO

BACKGROUND: The biological effects of nitric oxide are mediated via protein S-nitrosylation. Levels of S-nitrosylated protein are controlled in part by the denitrosylase, S-nitrosoglutathione reductase (GSNOR). The objective of this study was to examine whether GSNOR inhibition improves outcomes after cardiac arrest and cardiopulmonary resuscitation (CA/CPR). METHODS: Adult wild-type C57BL/6 and GSNOR-deleted (GSNOR-/-) mice were subjected to potassium chloride-induced CA and subsequently resuscitated. Fifteen minutes after a return of spontaneous circulation, wild-type mice were randomized to receive the GSNOR inhibitor, SPL-334.1, or normal saline as placebo. Mortality, neurological outcome, GSNOR activity, and levels of S-nitrosylated proteins were evaluated. Plasma GSNOR activity was measured in plasma samples obtained from post-CA patients, preoperative cardiac surgery patients, and healthy volunteers. RESULTS: GSNOR activity was increased in plasma and multiple organs of mice, including brain in particular. Levels of protein S-nitrosylation were decreased in the brain 6 hours after CA/CPR. Administration of SPL-334.1 attenuated the increase in GSNOR activity in brain, heart, liver, spleen, and plasma, and restored S-nitrosylated protein levels in the brain. Inhibition of GSNOR attenuated ischemic brain injury and improved survival in wild-type mice after CA/CPR (81.8% in SPL-334.1 versus 36.4% in placebo; log rank P=0.031). Similarly, GSNOR deletion prevented the reduction in the number of S-nitrosylated proteins in the brain, mitigated brain injury, and improved neurological recovery and survival after CA/CPR. Both GSNOR inhibition and deletion attenuated CA/CPR-induced disruption of blood brain barrier. Post-CA patients had higher plasma GSNOR activity than did preoperative cardiac surgery patients or healthy volunteers ( P<0.0001). Plasma GSNOR activity was positively correlated with initial lactate levels in postarrest patients (Spearman correlation coefficient=0.48; P=0.045). CONCLUSIONS: CA and CPR activated GSNOR and reduced the number of S-nitrosylated proteins in the brain. Pharmacological inhibition or genetic deletion of GSNOR prevented ischemic brain injury and improved survival rates by restoring S-nitrosylated protein levels in the brain after CA/CPR in mice. Our observations suggest that GSNOR is a novel biomarker of postarrest brain injury as well as a molecular target to improve outcomes after CA.


Assuntos
Aldeído Oxirredutases/antagonistas & inibidores , Benzoatos/uso terapêutico , Parada Cardíaca/terapia , Coração/efeitos dos fármacos , Pirimidinonas/uso terapêutico , Aldeído Oxirredutases/genética , Animais , Benzoatos/farmacologia , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , Oxirredução , Pirimidinonas/farmacologia , Ressuscitação , Resultado do Tratamento
14.
J Exp Biol ; 221(Pt 13)2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29748216

RESUMO

Weddell and elephant seals are deep-diving mammals, which rely on lung collapse to limit nitrogen absorption and prevent decompression injury. Repeated collapse and re-expansion exposes the lungs to multiple stressors, including ischemia-reperfusion, alveolar shear stress and inflammation. There is no evidence, however, that diving damages pulmonary function in these species. To investigate potential protective strategies in deep-diving seals, we examined the inflammatory response of seal whole blood exposed to lipopolysaccharide (LPS), a potent endotoxin. Interleukin-6 (IL6) cytokine production elicited by LPS exposure was 50 to 500 times lower in blood of healthy northern elephant seals and Weddell seals compared with that of healthy human blood. In contrast to the ∼6× increased production of IL6 protein from LPS-exposed Weddell seal whole blood, isolated Weddell seal peripheral blood mononuclear cells, under standard cell culture conditions using medium supplemented with fetal bovine serum (FBS), produced a robust LPS response (∼300×). Induction of Il6 mRNA expression as well as production of IL6, IL8, IL10, KC-like and TNFα were reduced by substituting FBS with an equivalent amount of autologous seal serum. Weddell seal serum also attenuated the inflammatory response of RAW 267.4 mouse macrophage cells exposed to LPS. Cortisol level and the addition of serum lipids did not impact the cytokine response in cultured cells. These data suggest that seal serum possesses anti-inflammatory properties, which may protect deep divers from naturally occurring inflammatory challenges such as dive-induced hypoxia-reoxygenation and lung collapse.


Assuntos
Anti-Inflamatórios/imunologia , Citocinas/metabolismo , Imunidade Inata , Lipopolissacarídeos/farmacologia , Focas Verdadeiras/imunologia , Soro/imunologia , Animais , Anti-Inflamatórios/sangue , Mergulho/fisiologia , Feminino , Leucócitos/imunologia , Masculino , Focas Verdadeiras/sangue , Especificidade da Espécie
15.
J Comp Physiol B ; 187(1): 29-50, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27686668

RESUMO

Marine mammals are characterized as having physiological specializations that maximize the use of oxygen stores to prolong time spent under water. However, it has been difficult to undertake the requisite controlled studies to determine the physiological limitations and trade-offs that marine mammals face while diving in the wild under varying environmental and nutritional conditions. For the past decade, Steller sea lions (Eumetopias jubatus) trained to swim and dive in the open ocean away from the physical confines of pools participated in studies that investigated the interactions between diving behaviour, energetic costs, physiological constraints, and prey availability. Many of these studies measured the cost of diving to understand how it varies with behaviour and environmental and physiological conditions. Collectively, these studies show that the type of diving (dive bouts or single dives), the level of underwater activity, the depth and duration of dives, and the nutritional status and physical condition of the animal affect the cost of diving and foraging. They show that dive depth, dive and surface duration, and the type of dive result in physiological adjustments (heart rate, gas exchange) that may be independent of energy expenditure. They also demonstrate that changes in prey abundance and nutritional status cause sea lions to alter the balance between time spent at the surface acquiring oxygen (and offloading CO2 and other metabolic by-products) and time spent at depth acquiring prey. These new insights into the physiological basis of diving behaviour further our understanding of the potential scope for behavioural responses of marine mammals to environmental changes, the energetic significance of these adjustments, and the consequences of approaching physiological limits.


Assuntos
Mergulho/fisiologia , Leões-Marinhos/fisiologia , Animais , Metabolismo Energético , Oceanos e Mares
16.
Am J Physiol Heart Circ Physiol ; 310(11): H1790-800, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27199131

RESUMO

Dysregulated nitric oxide (NO) signaling contributes to the pathogenesis of hypertension, a prevalent and often sex-specific risk factor for cardiovascular disease. We previously reported that mice deficient in the α1-subunit of the NO receptor soluble guanylate cyclase (sGCα1 (-/-) mice) display sex- and strain-specific hypertension: male but not female sGCα1 (-/-) mice are hypertensive on an 129S6 (S6) but not a C57BL6/J (B6) background. We aimed to uncover the genetic and molecular basis of the observed sex- and strain-specific blood pressure phenotype. Via linkage analysis, we identified a suggestive quantitative trait locus associated with elevated blood pressure in male sGCα1 (-/-)S6 mice. This locus encompasses Cyp4a12a, encoding the predominant murine synthase of the vasoconstrictor 20-hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE). Renal expression of Cyp4a12a in mice was associated with genetic background, sex, and testosterone levels. In addition, 20-HETE levels were higher in renal preglomerular microvessels of male sGCα1 (-/-)S6 than of male sGCα1 (-/-)B6 mice. Furthermore, treating male sGCα1 (-/-)S6 mice with the 20-HETE antagonist 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid (20-HEDE) lowered blood pressure. Finally, 20-HEDE rescued the genetic background- and testosterone-dependent impairment of acetylcholine-induced relaxation in renal interlobar arteries associated with sGCα1 deficiency. Elevated Cyp4a12a expression and 20-HETE levels render mice susceptible to hypertension and vascular dysfunction in a setting of sGCα1 deficiency. Our data identify Cyp4a12a as a candidate sex-specific blood pressure-modifying gene in the context of deficient NO-sGC signaling.


Assuntos
Androgênios/farmacologia , Família 4 do Citocromo P450/genética , Ácidos Hidroxieicosatetraenoicos/metabolismo , Hipertensão/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Feminino , Ligação Genética , Hipertensão/genética , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Camundongos , Camundongos Knockout , Locos de Características Quantitativas , Fatores Sexuais , Guanilil Ciclase Solúvel/genética , Testosterona/sangue
17.
Am J Physiol Heart Circ Physiol ; 310(11): H1592-605, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27084389

RESUMO

The study of brown adipose tissue (BAT) has gained significant scientific interest since the discovery of functional BAT in adult humans. The thermogenic properties of BAT are well recognized; however, data generated in the last decade in both rodents and humans reveal therapeutic potential for BAT against metabolic disorders and obesity. Here we review the current literature in light of a potential role for BAT in beneficially mediating cardiovascular health. We focus mainly on BAT's actions in obesity, vascular tone, and glucose and lipid metabolism. Furthermore, we discuss the recently discovered endocrine factors that have a potential beneficial role in cardiovascular health. These BAT-secreted factors may have a favorable effect against cardiovascular risk either through their metabolic role or by directly affecting the heart.


Assuntos
Tecido Adiposo Marrom/metabolismo , Vasos Sanguíneos/metabolismo , Doenças Cardiovasculares/prevenção & controle , Miocárdio/metabolismo , Comunicação Parácrina , Tecido Adiposo Marrom/fisiopatologia , Animais , Vasos Sanguíneos/fisiopatologia , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Dislipidemias/complicações , Dislipidemias/metabolismo , Dislipidemias/fisiopatologia , Transtornos do Metabolismo de Glucose/complicações , Transtornos do Metabolismo de Glucose/metabolismo , Transtornos do Metabolismo de Glucose/fisiopatologia , Humanos , Obesidade/complicações , Obesidade/metabolismo , Obesidade/fisiopatologia , Fatores de Risco , Transdução de Sinais , Termogênese
18.
J Comp Physiol B ; 185(6): 607-27, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25976608

RESUMO

The broad phylogenetic distribution and rapid phenotypic transitions of mammalian hibernators imply that hibernation is accomplished by differential expression of common genes. Traditional candidate gene approaches have thus far explained little of the molecular mechanisms underlying hibernation, likely due to (1) incomplete and imprecise sampling of a complex phenotype, and (2) the forming of hypotheses about which genes might be important based on studies of model organisms incapable of such dynamic physiology. Unbiased screening approaches, such as proteomics, offer an alternative means to discover the cellular underpinnings that permit successful hibernation and may reveal previously overlooked, important pathways. Here, we review the findings that have emerged from proteomics studies of hibernation. One striking feature is the stability of the proteome, especially across the extreme physiological shifts of torpor-arousal cycles during hibernation. This has led to subsequent investigations of the role of post-translational protein modifications in altering protein activity without energetically wasteful removal and rebuilding of protein pools. Another unexpected finding is the paucity of universal proteomic adjustments across organ systems in response to the extreme metabolic fluctuations despite the universality of their physiological challenges; rather each organ appears to respond in a unique, tissue-specific manner. Additional research is needed to extend and synthesize these results before it will be possible to address the whole body physiology of hibernation.


Assuntos
Hibernação/fisiologia , Proteômica/métodos , Tecido Adiposo Marrom/fisiologia , Animais , Encéfalo/fisiologia , Regulação da Expressão Gênica , Coração/fisiologia , Hibernação/genética , Fígado/fisiologia , Mamíferos/fisiologia , Músculo Esquelético , Especificidade de Órgãos , Processamento de Proteína Pós-Traducional , Estações do Ano , Termogênese
19.
J Exp Biol ; 218(Pt 2): 276-84, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25452506

RESUMO

Mammalian hibernators provide an extreme example of naturally occurring challenges to muscle homeostasis. The annual hibernation cycle is characterized by shifts between summer euthermy with tissue anabolism and accumulation of body fat reserves, and winter heterothermy with fasting and tissue catabolism. The circannual patterns of skeletal muscle remodelling must accommodate extended inactivity during winter torpor, the motor requirements of transient winter active periods, and sustained activity following spring emergence. Muscle volume in thirteen-lined ground squirrels (Ictidomys tridecemlineatus) calculated from MRI upper hindlimb images (n=6 squirrels, n=10 serial scans) declined from hibernation onset, reaching a nadir in early February. Paradoxically, mean muscle volume rose sharply after February despite ongoing hibernation, and continued total body mass decline until April. Correspondingly, the ratio of muscle volume to body mass was steady during winter atrophy (October-February) but increased (+70%) from February to May, which significantly outpaced changes in liver or kidney examined by the same method. Generally stable myocyte cross-sectional area and density indicated that muscle remodelling is well regulated in this hibernator, despite vastly altered seasonal fuel and activity levels. Body composition analysis by echo MRI showed lean tissue preservation throughout hibernation amid declining fat mass by the end of winter. Muscle protein synthesis was 66% depressed in early but not late winter compared with a summer fasted baseline, while no significant changes were observed in the heart, liver or intestine, providing evidence that could support a transition in skeletal muscle regulation between early and late winter, prior to spring emergence and re-feeding.


Assuntos
Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Sciuridae/fisiologia , Animais , Peso Corporal , Feminino , Hibernação/fisiologia , Membro Posterior , Masculino , Proteínas Musculares/análise , Músculo Esquelético/crescimento & desenvolvimento , Atrofia Muscular , Biossíntese de Proteínas , Sciuridae/crescimento & desenvolvimento , Estações do Ano
20.
Physiol Genomics ; 46(10): 348-61, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24642758

RESUMO

Small-bodied hibernators partition the year between active homeothermy and hibernating heterothermy accompanied by fasting. To define molecular events underlying hibernation that are both dependent and independent of fasting, we analyzed the liver proteome among two active and four hibernation states in 13-lined ground squirrels. We also examined fall animals transitioning between fed homeothermy and fasting heterothermy. Significantly enriched pathways differing between activity and hibernation were biased toward metabolic enzymes, concordant with the fuel shifts accompanying fasting physiology. Although metabolic reprogramming to support fasting dominated these data, arousing (rewarming) animals had the most distinct proteome among the hibernation states. Instead of a dominant metabolic enzyme signature, torpor-arousal cycles featured differences in plasma proteins and intracellular membrane traffic and its regulation. Phosphorylated NSFL1C, a membrane regulator, exhibited this torpor-arousal cycle pattern; its role in autophagosome formation may promote utilization of local substrates upon metabolic reactivation in arousal. Fall animals transitioning to hibernation lagged in their proteomic adjustment, indicating that the liver is more responsive than preparatory to the metabolic reprogramming of hibernation. Specifically, torpor use had little impact on the fall liver proteome, consistent with a dominant role of nutritional status. In contrast to our prediction of reprogramming the transition between activity and hibernation by gene expression and then within-hibernation transitions by posttranslational modification (PTM), we found extremely limited evidence of reversible PTMs within torpor-arousal cycles. Rather, acetylation contributed to seasonal differences, being highest in winter (specifically in torpor), consistent with fasting physiology and decreased abundance of the mitochondrial deacetylase, SIRT3.


Assuntos
Metabolismo Energético/fisiologia , Jejum/metabolismo , Hibernação/fisiologia , Fígado/metabolismo , Proteoma/metabolismo , Sciuridae/fisiologia , Estações do Ano , Acetilação , Animais , Western Blotting , Eletroforese em Gel Bidimensional , Espectrometria de Massas , Fosforilação , Proteômica , Sciuridae/metabolismo , Sirtuína 3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...