Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Toxics ; 12(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38535903

RESUMO

Various PFAS have been identified as potential endocrine-disrupting chemicals due to estrogen receptor activation, impacts on puberty timing, or impacts on hormonally sensitive endpoints in fish. This study screened multiple PFAS in the rat uterotrophic assay to determine potential estrogenic effects on the uterus with PFAS exposure. This study also explored PFAS-dependent uterine signaling with an osmotic stress mRNA gene expression array. Briefly, Sprague-Dawley rats (26-39 days old) were ovariectomized, and uterine tissue was allowed to regress for a 3-week period of recovery. Animals were then exposed daily via oral gavage to PFAS for 4 days, and then uterine weight was determined. In contrast to the positive control estrogens, the PFAS tested (4:2, 6:2, and 8:2FTOH; perfluorooctanesulfonamide (PFOSA), perfluorononanoic acid (PFNA), perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), nafion byproduct 2 (NBP2), 1H,1H,8H,8H-perfluorooctane-1,8-diol (FC8-diol) and 1H,1H,10H,10H-perfluorodecane-1,10-diol (FC10-diol)) caused no significant changes in the uterine weight. Hormonally active compounds can act as carcinogens, and because earlier rodent work has demonstrated that chronic PFOA exposure is associated with increased risk of uterine cancer, uterine mRNA gene expression was explored with an osmotic stress RT-qPCR array. PFAS exposure significantly upregulated multiple genes across the array, with PFOSA being the compound most similar to the reference estrogens (estradiol benzoate and ethinyl estradiol) in its expression pattern. Also, across all PFAS, pathway analysis revealed that the paxillin pathway, a pathway important in tumor suppressor gene SHP-2 signaling, was significantly upregulated with PFAS exposure. These results demonstrate that in vitro estrogen screens or impacts in fish may show different responses from direct impacts on mammalian uterine weight as assessed with the uterotrophic assay. This study also builds out new mechanisms that may contribute to understanding of carcinogenic changes seen in the uterus after PFAS exposure.

3.
Adv Nutr ; 13(6): 2098-2114, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36084013

RESUMO

National health and nutrition monitoring is an important federal effort in the United States and Canada, and the basis for many of their nutrition and health policies. Understanding of child exposures through human milk (HM) remains out of reach due to lack of current and representative data on HM's composition and intake volume. This article provides an overview of the current national health and nutrition monitoring activities for HM-fed children, HM composition (HMC) and volume data used for exposure assessment, categories of potential measures in HM, and associated variability factors. In this Perspective, we advocate for a framework for collection and reporting of HMC data for national health and nutrition monitoring and programmatic needs, including a shared vision for a publicly available Human Milk Composition Data Repository (HMCD-R) to include essential metadata associated with HMC. HMCD-R can provide a central, integrated platform for researchers and public health officials for compiling, evaluating, and sharing HMC data. The compiled compositional and metadata in HMCD-R would provide pertinent measures of central tendency and variability and allow use of modeling techniques to approximate compositional profiles for subgroups, providing more accurate exposure assessments for purposes of monitoring and surveillance. HMC and related metadata could facilitate understanding the complexity and variability of HM composition, provide crucial data for assessment of infant and maternal nutritional needs, and inform public health policies, food and nutrition programs, and clinical practice guidelines.


Assuntos
Leite Humano , Estado Nutricional , Lactente , Criança , Humanos , Estados Unidos , Canadá
4.
Environ Health Perspect ; 130(2): 25002, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35195447

RESUMO

BACKGROUND: Despite 20 y of biomonitoring studies of per- and polyfluoroalkyl substances (PFAS) in both serum and urine, we have an extremely limited understanding of PFAS concentrations in breast milk of women from the United States and Canada. The lack of robust information on PFAS concentrations in breast milk and implications for breastfed infants and their families were brought to the forefront by communities impacted by PFAS contamination. OBJECTIVES: The objectives of this work are to: a) document published PFAS breast milk concentrations in the United States and Canada; b) estimate breast milk PFAS levels from maternal serum concentrations in national surveys and communities impacted by PFAS; and c) compare measured/estimated milk PFAS concentrations to screening values. METHODS: We used three studies reporting breast milk concentrations in the United States and Canada We also estimated breast milk PFAS concentrations by multiplying publicly available serum concentrations by milk:serum partitioning ratios for perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), and perfluorononanoic acid (PFNA). Measured and estimated breast milk concentrations were compared to children's drinking water screening values. DISCUSSION: Geometric means of estimated breast milk concentrations ranged over approximately two orders of magnitude for the different surveys/communities. All geometric mean and mean estimated and measured breast milk PFOA and PFOS concentrations exceeded drinking water screening values for children, sometimes by more than two orders of magnitude. For PFHxS and PFNA, all measured breast milk levels were below the drinking water screening values for children; the geometric mean estimated breast milk concentrations were close to-or exceeded-the children's drinking water screening values for certain communities. Exceeding a children's drinking water screening value does not indicate that adverse health effects will occur and should not be interpreted as a reason to not breastfeed; it indicates that the situation should be further evaluated. It is past time to have a better understanding of environmental chemical transfer to-and concentrations in-an exceptional source of infant nutrition. https://doi.org/10.1289/EHP10359.


Assuntos
Ácidos Alcanossulfônicos , Água Potável , Poluentes Ambientais , Fluorocarbonos , Aleitamento Materno , Canadá , Caprilatos , Criança , Água Potável/análise , Feminino , Humanos , Lactente , Leite Humano/química , Estados Unidos
6.
Environ Pollut ; 242(Pt A): 894-904, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30373035

RESUMO

Perfluoroalkyl substances (PFAS) are a diverse class of manufactured compounds used in a wide range of industrial processes and consumer products and have been detected in human serum worldwide. Previous cross-sectional and cohort studies in humans have suggested exposure to PFAS is associated with a wide array of chronic diseases, including endocrine disruption, developmental health effects, cancer and metabolic changes. We examined the associations between a panel of eight PFAS and indicators of thyroid disruption, kidney function, and body mass index (BMI), all of which were measured at repeated time points (1990-2008) over the course of the study. Participants (N = 210) were selected from the Fernald Community Cohort based on household water supply from a PFAS-contaminated aquifer. In adjusted repeated measures models, we observed several notable associations between serum PFAS and thyroid hormones as well as kidney function as measured by estimated glomerular filtration rate (eGFR). An interquartile (IQR) increase in serum PFOS was associated with a 9.75% (95% CI = 1.72, 18.4) increase in thyroid stimulating hormone. An IQR increase in serum PFNA, PFHxS, and PFDeA was associated with a -1.61% (95% CI = -3.53, -0.59), -2.06% (95% CI = -3.53, -0.59), and -2.20% (95% CI = -4.25, -0.14) change in eGFR, respectively. On the other hand, an IQR increase in serum Me-PFOSA was associated with a 1.53% (95% CI = 0.34, 2.73) increase in eGFR. No significant associations with BMI and serum PFAS were noted. Our findings are in agreement with previous reports that serum PFAS are associated with altered kidney and thyroid function.


Assuntos
Exposição Ambiental/análise , Fluorocarbonos/sangue , Hormônios Tireóideos/sangue , Ácidos Alcanossulfônicos/sangue , Índice de Massa Corporal , Caprilatos/sangue , Estudos de Coortes , Estudos Transversais , Disruptores Endócrinos/sangue , Poluentes Ambientais/sangue , Humanos , Tireotropina
7.
Environ Health Perspect ; 126(9): 96002, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30256157

RESUMO

BACKGROUND: The benefits of breastfeeding to the infant and mother have been well documented. It is also well known that breast milk contains environmental chemicals, and numerous epidemiological studies have explored relationships between background levels of chemicals in breast milk and health outcomes in infants and children. OBJECTIVES: In this paper, we examine epidemiological literature to address the following question: Are infant exposures to background levels of environmental chemicals in breast milk and formula associated with adverse health effects? We critically review this literature a) to explore whether exposure-outcome associations are observed across studies, and b) to assess the literature quality. METHODS: We reviewed literature identified from electronic literature searches. We explored whether exposure-outcome associations are observed across studies by assessing the quality (using a modified version of a previously published quality assessment tool), consistency, and strengths and weaknesses in the literature. The epidemiological literature included cohorts from several countries and examined infants/children either once or multiple times over weeks to years. Health outcomes included four broad categories: growth and maturation, morbidity, biomarkers, and neurodevelopment. RESULTS: The available literature does not provide conclusive evidence of consistent or clinically relevant health consequences to infants exposed to environmental chemicals in breast milk at background levels. CONCLUSIONS: It is clear that more research would better inform our understanding of the potential for health impacts from infant dietary exposures to environmental chemicals. A critical data gap is a lack of research on environmental chemicals in formula and infant/child health outcomes. https://doi.org/10.1289/EHP1954.


Assuntos
Saúde da Criança , Exposição Dietética/análise , Poluentes Ambientais/efeitos adversos , Saúde do Lactente , Adolescente , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido
8.
Environ Health Perspect ; 126(9): 96001, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30187772

RESUMO

BACKGROUND: Human health risk assessment methods have advanced in recent years to more accurately estimate risks associated with exposure during childhood. However, predicting risks related to infant exposures to environmental chemicals in breast milk and formula remains challenging. OBJECTIVES: Our goal was to compile available information on infant exposures to environmental chemicals in breast milk and formula, describe methods to characterize infant exposure and potential for health risk in the context of a risk assessment, and identify research needed to improve risk analyses based on this type of exposure and health risk information. METHODS: We reviewed recent literature on levels of environmental chemicals in breast milk and formula, with a focus on data from the United States. We then selected three example publications that quantified infant exposure using breast milk or formula chemical concentrations and estimated breast milk or formula intake. The potential for health risk from these dietary exposures was then characterized by comparison with available health risk benchmarks. We identified areas of this approach in need of improvement to better characterize the potential for infant health risk from this critical exposure pathway. DISCUSSION: Measurements of chemicals in breast milk and formula are integral to the evaluation of risk from early life dietary exposures to environmental chemicals. Risk assessments may also be informed by research investigating the impact of chemical exposure on developmental processes known to be active, and subject to disruption, during infancy, and by analysis of exposure-response data specific to the infant life stage. Critical data gaps exist in all of these areas. CONCLUSIONS: Better-designed studies are needed to characterize infant exposures to environmental chemicals in breast milk and infant formula as well as to improve risk assessments of chemicals found in both foods. https://doi.org/10.1289/EHP1953.


Assuntos
Exposição Ambiental/análise , Poluentes Ambientais/análise , Fórmulas Infantis/análise , Leite Humano/química , Exposição Dietética/análise , Feminino , Humanos , Lactente , Recém-Nascido , Exposição Materna , Medição de Risco
9.
Environ Res ; 161: 144-152, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29145006

RESUMO

BACKGROUND: The current single-pollutant approach to regulating ambient air pollutants is effective at protecting public health, but efficiencies may be gained by addressing issues in a multipollutant context since multiple pollutants often have common sources and individuals are exposed to more than one pollutant at a time. OBJECTIVE: We performed a cross-disciplinary review of the effects of multipollutant exposures on cardiovascular effects. METHODS: A broad literature search for references including at least two criteria air pollutants (particulate matter [PM], ozone [O3], oxides of nitrogen, sulfur oxides, carbon monoxide) was conducted. References were culled based on scientific discipline then searched for terms related to cardiovascular disease. Most multipollutant epidemiologic and experimental (i.e., controlled human exposure, animal toxicology) studies examined PM and O3 together. DISCUSSION: Epidemiologic and experimental studies provide some evidence for O3 concentration modifying the effect of PM, although PM did not modify O3 risk estimates. Experimental studies of combined exposure to PM and O3 provided evidence for additivity, synergism, and/or antagonism depending on the specific health endpoint. Evidence for other pollutant pairs was more limited. CONCLUSIONS: Overall, the evidence for multipollutant effects was often heterogeneous, and the limited number of studies inhibited making a conclusion about the nature of the relationship between pollutant combinations and cardiovascular disease.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Exposição Ambiental , Poluentes Atmosféricos/efeitos adversos , Animais , Doenças Cardiovasculares/etiologia , Humanos , Material Particulado
10.
Am J Obstet Gynecol ; 217(3): 249-262, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28578176

RESUMO

Only through concerted and well-executed research endeavors can we gain the requisite knowledge to advance pregnancy care and have a positive impact on maternal and newborn health. Yet the heterogeneity inherent in individual studies limits our ability to compare and synthesize study results, thus impeding the capacity to draw meaningful conclusions that can be trusted to inform clinical care. The PhenX Toolkit (http://www.phenxtoolkit.org), supported since 2007 by the National Institutes of Health, is a web-based catalog of standardized protocols for measuring phenotypes and exposures relevant for clinical research. In 2016, a working group of pregnancy experts recommended 15 measures for the PhenX Toolkit that are highly relevant to pregnancy research. The working group followed the established PhenX consensus process to recommend protocols that are broadly validated, well established, nonproprietary, and have a relatively low burden for investigators and participants. The working group considered input from the pregnancy experts and the broader research community and included measures addressing the mode of conception, gestational age, fetal growth assessment, prenatal care, the mode of delivery, gestational diabetes, behavioral and mental health, and environmental exposure biomarkers. These pregnancy measures complement the existing measures for other established domains in the PhenX Toolkit, including reproductive health, anthropometrics, demographic characteristics, and alcohol, tobacco, and other substances. The preceding domains influence a woman's health during pregnancy. For each measure, the PhenX Toolkit includes data dictionaries and data collection worksheets that facilitate incorporation of the protocol into new or existing studies. The measures within the pregnancy domain offer a valuable resource to investigators and clinicians and are well poised to facilitate collaborative pregnancy research with the goal to improve patient care. To achieve this aim, investigators whose work includes the perinatal population are encouraged to utilize the PhenX Toolkit in the design and implementation of their studies, thus potentially reducing heterogeneity in data measures across studies. Such an effort will enhance the overall impact of individual studies, increasing the ability to draw more meaningful conclusions that can then be translated into clinical practice.


Assuntos
Bases de Dados Factuais/normas , Projetos de Pesquisa/normas , Software , Feminino , Humanos , Internet , Fenótipo , Gravidez , Pesquisa/normas
11.
Artigo em Inglês | MEDLINE | ID: mdl-28654008

RESUMO

Perfluoroalkyl substances (PFAS), chemicals used to make products stain and stick resistant, have been linked to health effects in adults and adverse birth outcomes. A growing body of literature also addresses health effects in children exposed to PFAS. This review summarizes the epidemiologic evidence for relationships between prenatal and/or childhood exposure to PFAS and health outcomes in children as well as to provide a risk of bias analysis of the literature. A systematic review was performed by searching PubMed for studies on PFAS and child health outcomes. We identified 64 studies for inclusion and performed risk of bias analysis on those studies. We determined that risk of bias across studies was low to moderate. Six categories of health outcomes emerged. These were: immunity/infection/asthma, cardio-metabolic, neurodevelopmental/attention, thyroid, renal, and puberty onset. While there are a limited number of studies for any one particular health outcome, there is evidence for positive associations between PFAS and dyslipidemia, immunity (including vaccine response and asthma), renal function, and age at menarche. One finding of note is that while PFASs are mixtures of multiple compounds few studies examine them as such, therefore the role of these compounds as complex mixtures remains largely unknown.


Assuntos
Exposição Ambiental , Poluentes Ambientais/toxicidade , Fluorocarbonos/toxicidade , Adolescente , Ácidos Alcanossulfônicos/toxicidade , Caprilatos/toxicidade , Criança , Pré-Escolar , Dislipidemias/induzido quimicamente , Feminino , Humanos , Imunidade Inata/efeitos dos fármacos , Lactente , Recém-Nascido , Rim/efeitos dos fármacos , Rim/fisiopatologia , Masculino , Menarca/efeitos dos fármacos
12.
Reprod Toxicol ; 69: 53-59, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28111093

RESUMO

Perfluorinated chemicals (PFCs) can act as endocrine-disrupting chemicals, but there has been limited study of their effects on ovarian reserve or fecundability. 99 women, 30-44 years old, without infertility were followed until pregnancy. Initially, serum was evaluated for Antimullerian hormone (AMH), thyroid hormones: thyroid stimulating hormone (TSH), thyroxine (T4), free thyroxine (fT4), and triiodothyronine (T3), and PFCs: perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), and perfluorohexanesulfonic acid (PFHxS). Bivariate analyses assessed the relationship between thyroid hormones, AMH, and PFCs. Fecundability ratios (FR) were determined for each PFC using a discrete time-varying Cox model and a day-specific probability model. PFC levels were positively correlated with each other (r 0.24-0.90), but there was no correlation with TSH (r 0.02-0.15) or AMH (r -0.01 to -0.15). FR point estimates for each PFC were neither strong nor statistically significant. Although increased exposure to PFCs correlates with thyroid hormone levels, there is no significant association with fecundability or ovarian reserve.


Assuntos
Ácidos Alcanossulfônicos/sangue , Caprilatos/sangue , Disruptores Endócrinos/sangue , Poluentes Ambientais/sangue , Fluorocarbonos/sangue , Ácidos Sulfônicos/sangue , Adulto , Monitoramento Ambiental , Ácidos Graxos , Feminino , Fertilidade , Humanos , Reserva Ovariana , Glândula Tireoide , Hormônios Tireóideos/sangue
13.
Environ Health Perspect ; 125(4): 706-713, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27405099

RESUMO

BACKGROUND: Serum concentrations of polybrominated diphenyl ethers (PBDEs) in U.S. women are believed to be among the world's highest; however, little information exists on the partitioning of PBDEs between serum and breast milk and how this may affect infant exposure. OBJECTIVES: Paired milk and serum samples were measured for PBDE concentrations in 34 women who participated in the U.S. EPA MAMA Study. Computational models for predicting milk PBDE concentrations from serum were evaluated. METHODS: Samples were analyzed using gas chromatography isotope-dilution high-resolution mass spectrometry. Observed milk PBDE concentrations were compared with model predictions, and models were applied to NHANES serum data to predict milk PBDE concentrations and infant intakes for the U.S. population. RESULTS: Serum and milk samples had detectable concentrations of most PBDEs. BDE-47 was found in the highest concentrations (median serum: 18.6; milk: 31.5 ng/g lipid) and BDE-28 had the highest milk:serum partitioning ratio (2.1 ± 0.2). No evidence of depuration was found. Models demonstrated high reliability and, as of 2007-2008, predicted U.S. milk concentrations of BDE-47, BDE-99, and BDE-100 appear to be declining but BDE-153 may be rising. Predicted infant intakes (ng/kg/day) were below threshold reference doses (RfDs) for BDE-99 and BDE-153 but above the suggested RfD for BDE-47. CONCLUSIONS: Concentrations and partitioning ratios of PBDEs in milk and serum from women in the U.S. EPA MAMA Study are presented for the first time; modeled predictions of milk PBDE concentrations using serum concentrations appear to be a valid method for estimating PBDE exposure in U.S. infants.


Assuntos
Poluentes Ambientais/metabolismo , Éteres Difenil Halogenados/metabolismo , Exposição Materna/estatística & dados numéricos , Leite Humano/metabolismo , Monitoramento Ambiental , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Modelos Teóricos , Bifenil Polibromatos/metabolismo , Medição de Risco , Estados Unidos , United States Environmental Protection Agency
14.
Reprod Toxicol ; 54: 120-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25463527

RESUMO

Phenols and parabens show some evidence for endocrine disruption in laboratory animals. The goal of the Methods Advancement for Milk Analysis (MAMA) Study was to develop or adapt methods to measure parabens (methyl, ethyl, butyl, propyl) and phenols (bisphenol A (BPA), 2,4- and 2,5-dichlorophenol, benzophenone-3, triclosan) in urine, milk and serum twice during lactation, to compare concentrations across matrices and with endogenous biomarkers among 34 North Carolina women. These non-persistent chemicals were detected in most urine samples (53-100%) and less frequently in milk or serum; concentrations differed by matrix. Although urinary parabens, triclosan and dichlorophenols concentrations correlated significantly at two time points, those of BPA and benzophenone-3 did not, suggesting considerable variability in those exposures. These pilot data suggest that nursing mothers are exposed to phenols and parabens; urine is the best measurement matrix; and correlations between chemical and endogenous immune-related biomarkers merit further investigation.


Assuntos
Poluentes Ambientais/metabolismo , Lactação/metabolismo , Leite Humano/metabolismo , Parabenos/metabolismo , Fenóis/metabolismo , Adolescente , Adulto , Biomarcadores/metabolismo , Carga Corporal (Radioterapia) , Monitoramento Ambiental/métodos , Poluentes Ambientais/efeitos adversos , Poluentes Ambientais/sangue , Poluentes Ambientais/urina , Feminino , Humanos , Lactação/sangue , Lactação/urina , Exposição Materna/efeitos adversos , North Carolina , Parabenos/efeitos adversos , Fenóis/efeitos adversos , Fenóis/sangue , Fenóis/urina , Projetos Piloto , Medição de Risco , Fatores de Risco , Adulto Jovem
15.
Crit Rev Toxicol ; 44(7): 600-17, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25068490

RESUMO

Lipophilic persistent environmental chemicals (LPECs) have the potential to accumulate within a woman's body lipids over the course of many years prior to pregnancy, to partition into human milk, and to transfer to infants upon breastfeeding. As a result of this accumulation and partitioning, a breastfeeding infant's intake of these LPECs may be much greater than his/her mother's average daily exposure. Because the developmental period sets the stage for lifelong health, it is important to be able to accurately assess chemical exposures in early life. In many cases, current human health risk assessment methods do not account for differences between maternal and infant exposures to LPECs or for lifestage-specific effects of exposure to these chemicals. Because of their persistence and accumulation in body lipids and partitioning into breast milk, LPECs present unique challenges for each component of the human health risk assessment process, including hazard identification, dose-response assessment, and exposure assessment. Specific biological modeling approaches are available to support both dose-response and exposure assessment for lactational exposures to LPECs. Yet, lack of data limits the application of these approaches. The goal of this review is to outline the available approaches and to identify key issues that, if addressed, could improve efforts to apply these approaches to risk assessment of lactational exposure to these chemicals.


Assuntos
Poluentes Ambientais/análise , Exposição Materna , Leite Humano/química , Medição de Risco , Animais , Relação Dose-Resposta a Droga , Feminino , Humanos , Modelos Teóricos , Método de Monte Carlo , Gravidez , Ratos , Projetos de Pesquisa
16.
Environ Health Perspect ; 122(7): 754-60, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24667492

RESUMO

BACKGROUND: It is difficult to discern the proportion of blood lead (PbB) attributable to ambient air lead (PbA), given the multitude of lead (Pb) sources and pathways of exposure. The PbB-PbA relationship has previously been evaluated across populations. This relationship was a central consideration in the 2008 review of the Pb national ambient air quality standards. OBJECTIVES: The objectives of this study were to evaluate the relationship between PbB and PbA concentrations among children nationwide for recent years and to compare the relationship with those obtained from other studies in the literature. METHODS: We merged participant-level data for PbB from the National Health and Nutrition Examination Survey (NHANES) III (1988-1994) and NHANES 9908 (1999-2008) with PbA data from the U.S. Environmental Protection Agency. We applied mixed-effects models, and we computed slope factor, d[PbB]/d[PbA] or the change in PbB per unit change in PbA, from the model results to assess the relationship between PbB and PbA. RESULTS: Comparing the NHANES regression results with those from the literature shows that slope factor increased with decreasing PbA among children 0-11 years of age. CONCLUSION: These findings suggest that a larger relative public health benefit may be derived among children from decreases in PbA at low PbA exposures. Simultaneous declines in Pb from other sources, changes in PbA sampling uncertainties over time largely related to changes in the size distribution of Pb-bearing particulate matter, and limitations regarding sampling size and exposure error may contribute to the variability in slope factor observed across peer-reviewed studies.


Assuntos
Poluentes Atmosféricos/análise , Poluentes Atmosféricos/sangue , Exposição Ambiental , Chumbo/análise , Chumbo/sangue , Criança , Pré-Escolar , Monitoramento Ambiental , Humanos , Lactente , Recém-Nascido , Inquéritos Nutricionais , Fatores de Tempo , Estados Unidos
17.
Reprod Toxicol ; 33(4): 506-512, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22146484

RESUMO

The estrogenic and antiestrogenic potential of perfluorooctanoic acid (PFOA) was assessed using an immature mouse uterotrophic assay and by histologic evaluation of the uterus, cervix and vagina following treatment. Female offspring of CD-1 dams were weaned at 18days old and assigned to groups of equal weight, and received 0, 0.01, 0.1, or 1mg PFOA/kg BW/d by gavage with or without 17-ß estradiol (E(2), 500µg/kg/d) from PND 18-20 (n=8/treatment/block). At 24h after the third dose (PND 21), uteri were removed and weighed. Absolute and relative uterine weights were significantly increased in the 0.01mg/kg PFOA only group. Characteristic estrogenic changes were present in all E(2)-treated mice; however, they were minimally visible in the 0.01 PFOA only mice. These data suggest that at a low dose PFOA produces minimal histopathologic changes in the reproductive tract of immature female mice, and does not antagonize the histopathologic effects of E(2).


Assuntos
Caprilatos/toxicidade , Disruptores Endócrinos/toxicidade , Fluorocarbonos/toxicidade , Útero/efeitos dos fármacos , Útero/patologia , Vagina/efeitos dos fármacos , Vagina/patologia , Administração Oral , Animais , Bioensaio , Colo do Útero/efeitos dos fármacos , Colo do Útero/patologia , Relação Dose-Resposta a Droga , Estradiol/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos , Tamanho do Órgão/efeitos dos fármacos
18.
Environ Health Perspect ; 119(8): 1070-6, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21501981

RESUMO

BACKGROUND: Prenatal exposure to perfluorooctanoic acid (PFOA), a ubiquitous industrial surfactant, has been reported to delay mammary gland development in female mouse offspring (F1) and the treated lactating dam (P0) after gestational treatments at 3 and 5 mg PFOA/kg/day. OBJECTIVE: We investigated the consequences of gestational and chronic PFOA exposure on F1 lactational function and subsequent development of F2 offspring. METHODS: We treated P0 dams with 0, 1, or 5 mg PFOA/kg/day on gestation days 1-17. In addition, a second group of P0 dams treated with 0 or 1 mg/kg/day during gestation and their F1 and F2 offspring received continuous PFOA exposure (5 ppb) in drinking water. Resulting adult F1 females were bred to generate F2 offspring, whose development was monitored over postnatal days (PNDs) 1-63. F1 gland function was assessed on PND10 by timed-lactation experiments. Mammary tissue was isolated from P0, F1, and F2 females throughout the study and histologically assessed for age-appropriate development. RESULTS: PFOA-exposed F1 dams exhibited diminished lactational morphology, although F1 maternal behavior and F2 offspring body weights were not significantly affected by P0 treatment. In addition to reduced gland development in F1 females under all exposures, F2 females with chronic low-dose drinking-water exposures exhibited visibly slowed mammary gland differentiation from weaning onward. F2 females derived from 5 mg/kg PFOA-treated P0 dams displayed gland morphology similar to F2 chronic water exposure groups on PNDs 22-63. CONCLUSIONS: Gestational PFOA exposure induced delays in mammary gland development and/or lactational differentiation across three generations. Chronic, low-dose PFOA exposure in drinking water was also sufficient to alter mammary morphological development in mice, at concentrations approximating those found in contaminated human water supplies.


Assuntos
Caprilatos/toxicidade , Fluorocarbonos/toxicidade , Glândulas Mamárias Animais/efeitos dos fármacos , Animais , Feminino , Idade Gestacional , Lactação/efeitos dos fármacos , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal
19.
J Steroid Biochem Mol Biol ; 127(1-2): 16-26, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21397692

RESUMO

Perfluoroalkyl acids (PFAAs) have attracted attention in recent years for their environmental ubiquity, as well as their toxicity. Several PFAAs are found in human tissues globally, as humans are exposed on a daily basis through intake of contaminated food, water, and air, irrespective of proximity to industry. Perfluorooctanoic acid (PFOA) is a PFAA shown to be developmentally toxic in mice, with broad and varied health consequences that may include long-lasting effects in reproductive tissues and metabolic reprogramming. To date, the only demonstrated mode of action by which the health effects of PFOA are mediated is via the activation of the peroxisome proliferator-activated receptor alpha (PPARα). The endogenous roles for this receptor, as well as the adverse outcomes of activation by exogenous agents during development, are currently under investigation. Recent studies suggest that PFOA may alter steroid hormone production or act indirectly, via ovarian effects, as a novel means of endocrine disruption. Here we review the existing literature on the known health effects of PFOA in animal models, focusing on sensitive developmental periods. To complement this, we also present epidemiologic health data, with the caveat that these studies largely address only associations between adult exposures and outcomes, rarely focusing on endocrine-specific endpoints, susceptible subpopulations, or windows of sensitivity. Further research in these areas is needed.


Assuntos
Caprilatos/toxicidade , Disruptores Endócrinos/toxicidade , Fluorocarbonos/toxicidade , Animais , Caprilatos/sangue , Disruptores Endócrinos/sangue , Feminino , Fluorocarbonos/sangue , Humanos , Sistema Imunitário/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Camundongos , Gravidez , Resultado da Gravidez , Coelhos , Ratos , Glândula Tireoide/efeitos dos fármacos
20.
Mol Cell Endocrinol ; 304(1-2): 97-105, 2009 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-19433254

RESUMO

The synthetic surfactant, perfluorooctanoic acid (PFOA) is a proven developmental toxicant in mice, causing pregnancy loss, increased neonatal mortality, delayed eye opening, and abnormal mammary gland growth in animals exposed during fetal life. PFOA is found in the sera and tissues of wildlife and humans throughout the world, but is especially high in the sera of children compared to adults. These studies in CD-1 mice aim to determine the latent health effects of PFOA following: (1) an in utero exposure, (2) an in utero exposure followed by ovariectomy (ovx), or (3) exposure as an adult. Mice were exposed to 0, 0.01, 0.1, 0.3, 1, 3, or 5mg PFOA/kg BW for 17 days of pregnancy or as young adults. Body weight was reduced in the highest doses on postnatal day (PND) 1 and at weaning. However, the lowest exposures (0.01-0.3mg/kg) significantly increased body weight, and serum insulin and leptin (0.01-0.1mg/kg) in mid-life after developmental exposure. PFOA exposure combined with ovx caused no additional increase in mid-life body weight. At 18 months of age, the effects of in utero PFOA exposure on body weight were no longer detected. White adipose tissue and spleen weights were decreased at high doses of PFOA in intact developmentally exposed mice, and spleen weight was reduced in PFOA-exposed ovx mice. Brown adipose tissue weight was significantly increased in both ovx and intact mice at high PFOA doses. Liver weight was unaffected in late life by these exposure paradigms. Finally, there was no effect of adult exposure to PFOA on body weight. These studies demonstrate an important window of exposure for low-dose effects of PFOA on body weight gain, as well as leptin and insulin concentrations in mid-life, at a lowest observed effect level of 0.01mg PFOA/kg BW. The mode of action of these effects and its relevance to human health remain to be explored.


Assuntos
Peso Corporal/efeitos dos fármacos , Caprilatos/farmacologia , Fluorocarbonos/farmacologia , Insulina/sangue , Leptina/sangue , Exposição Materna , Sobrepeso , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Humanos , Camundongos , Tamanho do Órgão/efeitos dos fármacos , Ovariectomia , Fenótipo , Gravidez , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...