Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioeng Transl Med ; 8(6): e10538, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38023712

RESUMO

Chimeric antigen receptor (CAR)-modified T-cell therapy has shown enormous clinical promise against blood cancers, yet efficacy against solid tumors remains a challenge. Here, we investigated the potential of a new combination cell therapy, where tumor-homing induced neural stem cells (iNSCs) are used to enhance CAR-T-cell therapy and achieve efficacious suppression of brain tumors. Using in vitro and in vivo migration assays, we found iNSC-secreted RANTES/IL-15 increased CAR-T-cell migration sixfold and expansion threefold, resulting in greater antitumor activity in a glioblastoma (GBM) tumor model. Furthermore, multimodal imaging showed iNSC delivery of RANTES/IL-15 in combination with intravenous administration of CAR-T cells reduced established orthotopic GBM xenografts 2538-fold within the first week, followed by durable tumor remission through 60 days post-treatment. By contrast, CAR-T-cell therapy alone only partially controlled tumor growth, with a median survival of only 19 days. Together, these studies demonstrate the potential of combined cell therapy platforms to improve the efficacy of CAR-T-cell therapy for brain tumors.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37756182

RESUMO

Glioblastoma is an aggressive brain cancer with a very poor prognosis in which less than 6% of patients survive more than five-year post-diagnosis. The outcome of this disease for many patients may be improved by early detection. This could provide clinicians with the information needed to take early action for treatment. In this work, we present the utilization of a non-invasive, fully volumetric ultrasonic imaging method to assess microvascular change during the evolution of glioblastoma in mice. Volumetric ultrasound localization microscopy (ULM) was used to observe statistically significant ( ) reduction in the appearance of functional vasculature over the course of three weeks. We also demonstrate evidence suggesting the reduction of vascular flow for vessels peripheral to the tumor. With an 82.5% consistency rate in acquiring high-quality vascular images, we demonstrate the possibility of volumetric ULM as a longitudinal method for microvascular characterization of neurological disease.


Assuntos
Glioblastoma , Camundongos , Humanos , Animais , Glioblastoma/diagnóstico por imagem , Microvasos/diagnóstico por imagem , Ultrassonografia/métodos , Encéfalo/irrigação sanguínea , Perfusão , Microbolhas
3.
Neuro Oncol ; 25(9): 1551-1562, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37179459

RESUMO

Glioblastoma (GBM) is a highly aggressive tumor with a devastating impact on quality-of-life and abysmal survivorship. Patients have very limited effective treatment options. The successes of targeted small molecule drugs and immune checkpoint inhibitors seen in various solid tumors have not translated to GBM, despite significant advances in our understanding of its molecular, immune, and microenvironment landscapes. These discoveries, however, have unveiled GBM's incredible heterogeneity and its role in treatment failure and survival. Novel cellular therapy technologies are finding successes in oncology and harbor characteristics that make them uniquely suited to overcome challenges posed by GBM, such as increased resistance to tumor heterogeneity, modularity, localized delivery, and safety. Considering these advantages, we compiled this review article on cellular therapies for GBM, focusing on cellular immunotherapies and stem cell-based therapies, to evaluate their utility. We categorize them based on their specificity, review their preclinical and clinical data, and extract valuable insights to help guide future cellular therapy development.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Neoplasias Encefálicas/terapia , Resultado do Tratamento , Imunoterapia , Microambiente Tumoral
4.
Pharmaceutics ; 14(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36297678

RESUMO

Glioblastoma multiforme (GBM) is the most common malignant brain tumor in adults and despite recent advances in treatment modalities, GBM remains incurable. Injectable hydrogel scaffolds are a versatile delivery system that can improve delivery of drug and cell therapeutics for GBM. In this report, we investigated an injectable nanocellulose/chitosan-based hydrogel scaffold for neural stem cell encapsulation and delivery. Hydrogels were prepared using thermogelling beta-glycerophosphate (BGP) and hydroxyethyl cellulose (HEC), chitosan (CS), and cellulose nanocrystals (CNCs). We evaluated the impact of neural stem cells on hydrogel gelation kinetics, microstructures, and degradation. Furthermore, we investigated the biomaterial effects on cell viability and functionality. We demonstrated that the incorporation of cells at densities of 1, 5 and 10 million does not significantly impact rheological and physical properties CS scaffolds. However, addition of CNCs significantly prolonged hydrogel degradation when cells were seeded at 5 and 10 million per 1 mL hydrogel. In vitro cell studies demonstrated high cell viability, release of TRAIL at therapeutic concentrations, and effective tumor cell killing within 72 h. The ability of these hydrogel scaffolds to support stem cell encapsulation and viability and maintain stem cell functionality makes them an attractive cell delivery system for local treatment of post-surgical cancers.

5.
Bioeng Transl Med ; 7(2): e10283, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600639

RESUMO

Induced neural stem cells (iNSCs) have emerged as a promising therapeutic platform for glioblastoma (GBM). iNSCs have the innate ability to home to tumor foci, making them ideal carriers for antitumor payloads. However, the in vivo persistence of iNSCs limits their therapeutic potential. We hypothesized that by encapsulating iNSCs in the FDA-approved, hemostatic matrix FLOSEAL®, we could increase their persistence and, as a result, therapeutic durability. Encapsulated iNSCs persisted for 95 days, whereas iNSCs injected into the brain parenchyma persisted only 2 weeks in mice. Two orthotopic GBM tumor models were used to test the efficacy of encapsulated iNSCs. In the GBM8 tumor model, mice that received therapeutic iNSCs encapsulated in FLOSEAL® survived 30 to 60 days longer than mice that received nonencapsulated cells. However, the U87 tumor model showed no significant differences in survival between these two groups, likely due to the more solid and dense nature of the tumor. Interestingly, the interaction of iNSCs with FLOSEAL® appears to downregulate some markers of proliferation, anti-apoptosis, migration, and therapy which could also play a role in treatment efficacy and durability. Our results demonstrate that while FLOSEAL® significantly improves iNSC persistence, this alone is insufficient to enhance therapeutic durability.

6.
Stem Cell Rev Rep ; 18(7): 2474-2493, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35441348

RESUMO

The spread of non-small cell lung cancer (NSCLC) to the leptomeninges is devastating with a median survival of only a few months. Radiation offers symptomatic relief, but new adjuvant therapies are desperately needed. Spheroidal, human induced neural stem cells (hiNeuroS) secreting the cytotoxic protein, TRAIL, have innate tumoritropic properties. Herein, we provide evidence that hiNeuroS-TRAIL cells can migrate to and suppress growth of NSCLC metastases in combination with radiation. In vitro cell tracking and post-mortem tissue analysis showed that hiNeuroS-TRAIL cells migrate to NSCLC tumors. Importantly, isobolographic analysis suggests that TRAIL with radiation has a synergistic cytotoxic effect on NSCLC tumors. In vivo, mice treated with radiation and hiNeuroS-TRAIL showed significant (36.6%) improvements in median survival compared to controls. Finally, bulk mRNA sequencing analysis showed both NSCLC and hiNeuroS-TRAIL cells showed changes in genes involved in migration following radiation. Overall, hiNeuroS-TRAIL cells +/- radiation have the capacity to treat NSCLC metastases.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Células-Tronco Neurais , Animais , Antineoplásicos/farmacologia , Apoptose , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Camundongos , Células-Tronco Neurais/metabolismo , RNA Mensageiro , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
7.
Mol Cancer Ther ; 20(11): 2291-2301, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34433662

RESUMO

Converting human fibroblasts into personalized induced neural stem cells (hiNSC) that actively seek out tumors and deliver cytotoxic agents is a promising approach for treating cancer. Herein, we provide the first evidence that intravenously-infused hiNSCs secreting cytotoxic agent home to and suppress the growth of non-small cell lung cancer (NSCLC) and triple-negative breast cancer (TNBC). Migration of hiNSCs to NSCLC and TNBC in vitro was investigated using time-lapse motion analysis, which showed directional movement of hiNSCs to both tumor cell lines. In vivo, migration of intravenous hiNSCs to orthotopic NSCLC or TNBC tumors was determined using bioluminescent imaging (BLI) and immunofluorescent post-mortem tissue analysis, which indicated that hiNSCs colocalized with tumors within 3 days of intravenous administration and persisted through 14 days. In vitro, efficacy of hiNSCs releasing cytotoxic TRAIL (hiNSC-TRAIL) was monitored using kinetic imaging of co-cultures, in which hiNSC-TRAIL therapy induced rapid killing of both NSCLC and TNBC. Efficacy was determined in vivo by infusing hiNSC-TRAIL or control cells intravenously into mice bearing orthotopic NSCLC or TNBC and tracking changes in tumor volume using BLI. Mice treated with intravenous hiNSC-TRAIL showed a 70% or 72% reduction in NSCLC or TNBC tumor volume compared with controls within 14 or 21 days, respectively. Safety was assessed by hematology, blood chemistry, and histology, and no significant changes in these safety parameters was observed through 28 days. These results indicate that intravenous hiNSCs-TRAIL seek out and kill NSCLC and TNBC tumors, suggesting a potential new strategy for treating aggressive peripheral cancers.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Células-Tronco Neurais/transplante , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Humanos , Camundongos
8.
Stem Cell Rev Rep ; 17(6): 2025-2041, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34138421

RESUMO

Despite the recent influx of immunotherapies and small molecule drugs to treat tumors, cancer remains a leading cause of death in the United States, in large part due to the difficulties of treating metastatic cancer. Stem cells, which are inherently tumoritropic, provide a useful drug delivery vehicle to target both primary and metastatic tumors. Intravenous infusions of stem cells carrying or secreting therapeutic payloads show significant promise in the treatment of cancer. Stem cells may be engineered to secrete cytotoxic products, loaded with oncolytic viruses or nanoparticles containing small molecule drugs, or conjugated with immunotherapies. Herein we describe these preclinical and clinical studies, discuss the distribution and migration of stem cells following intravenous infusion, and examine both the limitations of and the methods to improve the migration and therapeutic efficacy of tumoritropic, therapeutic stem cells.


Assuntos
Células-Tronco Mesenquimais , Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Células-Tronco
9.
Sci Adv ; 7(24)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34108203

RESUMO

Engineered tumor-homing neural stem cells (NSCs) have shown promise in treating cancer. Recently, we transdifferentiated skin fibroblasts into human-induced NSCs (hiNSC) as personalized NSC drug carriers. Here, using a SOX2 and spheroidal culture-based reprogramming strategy, we generated a new hiNSC variant, hiNeuroS, that was genetically distinct from fibroblasts and first-generation hiNSCs and had significantly enhanced tumor-homing and antitumor properties. In vitro, hiNeuroSs demonstrated superior migration to human triple-negative breast cancer (TNBC) cells and in vivo rapidly homed to TNBC tumor foci following intracerebroventricular (ICV) infusion. In TNBC parenchymal metastasis models, ICV infusion of hiNeuroSs secreting the proapoptotic agent TRAIL (hiNeuroS-TRAIL) significantly reduced tumor burden and extended median survival. In models of TNBC leptomeningeal carcinomatosis, ICV dosing of hiNeuroS-TRAIL therapy significantly delayed the onset of tumor formation and extended survival when administered as a prophylactic treatment, as well as reduced tumor volume while prolonging survival when delivered as established tumor therapy.


Assuntos
Células-Tronco Neurais , Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Fibroblastos , Humanos , Células-Tronco Neoplásicas/patologia , Células-Tronco Neurais/patologia , Neoplasias de Mama Triplo Negativas/patologia
10.
Bioeng Transl Med ; 6(1): e10171, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33532581

RESUMO

In this study, we take an important step toward clinical translation by generating the first canine-induced neural stem cells (iNSCs). We explore key aspects of scale-up, persistence, and safety of personalized iNSC therapy in autologous canine surgery models. iNSCs are a promising new approach to treat aggressive cancers of the brain, including the deadly glioblastoma. Created by direct transdifferentiation of fibroblasts, iNSCs are known to migrate through the brain, track down invasive cancer foci, and deliver anticancer payloads that significantly reduce tumor burden and extend survival of tumor-bearing mice. Here, skin biopsies were collected from canines and converted into the first personalized canine iNSCs engineered to carry TNFα-related apoptosis-inducing ligand (TRAIL) and thymidine kinase (TK), as well as magnetic resonance imaging (MRI) contrast agents for in vivo tracking. Time-lapse analysis showed canine iNSCs efficiently migrate to human tumor cells, and cell viability assays showed both TRAIL and TK monotherapy markedly reduced tumor growth. Using intraoperative navigation and two delivery methods to closely mimic human therapy, canines received autologous iNSCs either within postsurgical cavities in a biocompatible matrix or via a catheter placed in the lateral ventricle. Both strategies were well tolerated, and serial MRI showed hypointense regions at the implant sites that remained stable through 86 days postimplant. Serial fluid sample testing following iNSC delivery showed the bimodal personalized therapy was well tolerated, with no iNSC-induced abnormal tissue pathology. Overall, this study lays an important foundation as this promising personalized cell therapy advances toward human patient testing.

11.
Tissue Eng Part A ; 27(13-14): 857-866, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32907497

RESUMO

Engineered neural stem cells (NSCs) have recently emerged as a promising therapy. Acting as a tumor-homing drug-delivery system, NSCs migrate through brain tissue to seek out primary and invasive tumor foci. NSCs can deliver therapeutic agents, such as TNFα-related apoptosis-inducing ligand, directly to the tumor and suppress glioblastoma (GBM) in murine models. While the mainstays for evaluating NSC migration and efficacy have been two-dimensional chemotaxis assays and mouse models, these low-throughput and small-scale systems limit our ability to implant and track these cells for human translation. To circumvent these challenges, we developed a three-dimensional culture system using a matrix of poly-l-lactic acid 6100 microfibers suspended in agar. These bioinspired brain matrices were used to model tumor growth, NSC migration, and efficacy of NSC therapy at small and human scale. Kinetic fluorescent imaging confirmed growth of tumors in both small and human-sized bioinspired brain matrix. Tumors proliferated 50-fold and 3-fold for GBM and human metastatic breast cancer, respectively, over 7 days. We next explored the impact of tumor location on NSC migration. When NSCs were implanted 2 mm lateral from the tumor foci, NSCs colocalized with the GBM within 7 days. In models of multifocal disease, NSCs were found to colocalize with multiple tumors, preferentially migrating to tumor foci closest to the site of NSC implantation. Lastly, therapeutic NSCs were implanted at increasing distances (0, 2, 5, or 10 mm) laterally from GBM foci to investigate the effects of distance on NSC efficacy. Serial imaging showed reduced fluorescence at tumor sites, implicating GBM apoptosis across all distances. NSCs coinjected with tumor induced a near-complete response in <10 days, while NSCs implanted 10 mm laterally from the tumor induced a near-complete response by day 30. Lastly, GBM foci were established in each hemisphere of the model and control or therapeutic NSCs were implanted adjacent to tumor cells in the right hemisphere. Kinetic imaging showed that NSC therapy attenuated progression of GBM foci, while GBM cells treated with control NSC expanded rapidly over 21 days. In conclusion, we developed a new bioinspired model that supports growth of human brain cancer cells and enables rapid tracking of NSC therapy. Impact statement Tumor-homing and tumor-killing-engineered neural stem cell (NSC) therapies have shown immense promise in both preclinical and clinical trials. However, as cell therapies continue to evolve, cost-effective and high-throughput screening assays are needed to assess the proliferation, migration, and efficacy of these cells. In this study, we developed a bioinspired brain matrix for the evaluation of engineered NSCs. Importantly, this matrix is easy to fabricate, scalable, and allows for sterile real-time, noninvasive imaging using our custom bioreactor. We then utilized the bioinspired brain matrix system to answer key questions around the tumor-homing migration and efficacy of engineered NSC therapies that are challenging to address with traditional models.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Células-Tronco Neurais , Animais , Apoptose , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Camundongos
12.
Tissue Eng Part A ; 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33085922

RESUMO

Engineered neural stem cells (NSCs) have recently emerged as a promising therapy. Acting as a tumor-homing drug-delivery system, NSCs migrate through brain tissue to seek out primary and invasive tumor foci. NSCs can deliver therapeutic agents, such as TNFα-related apoptosis-inducing ligand, directly to the tumor and suppress glioblastoma (GBM) in murine models. While the mainstays for evaluating NSC migration and efficacy have been two-dimensional chemotaxis assays and mouse models, these low-throughput and small-scale systems limit our ability to implant and track these cells for human translation. To circumvent these challenges, we developed a three-dimensional culture system using a matrix of poly-l-lactic acid 6100 microfibers suspended in agar. These bioinspired brain matrices were used to model tumor growth, NSC migration, and efficacy of NSC therapy at small and human scale. Kinetic fluorescent imaging confirmed growth of tumors in both small and human-sized bioinspired brain matrix. Tumors proliferated 50-fold and 3-fold for GBM and human metastatic breast cancer, respectively, over 7 days. We next explored the impact of tumor location on NSC migration. When NSCs were implanted 2 mm lateral from the tumor foci, NSCs colocalized with the GBM within 7 days. In models of multifocal disease, NSCs were found to colocalize with multiple tumors, preferentially migrating to tumor foci closest to the site of NSC implantation. Lastly, therapeutic NSCs were implanted at increasing distances (0, 2, 5, or 10 mm) laterally from GBM foci to investigate the effects of distance on NSC efficacy. Serial imaging showed reduced fluorescence at tumor sites, implicating GBM apoptosis across all distances. NSCs coinjected with tumor induced a near-complete response in <10 days, while NSCs implanted 10 mm laterally from the tumor induced a near-complete response by day 30. Lastly, GBM foci were established in each hemisphere of the model and control or therapeutic NSCs were implanted adjacent to tumor cells in the right hemisphere. Kinetic imaging showed that NSC therapy attenuated progression of GBM foci, while GBM cells treated with control NSC expanded rapidly over 21 days. In conclusion, we developed a new bioinspired model that supports growth of human brain cancer cells and enables rapid tracking of NSC therapy. Impact statement Tumor-homing and tumor-killing-engineered neural stem cell (NSC) therapies have shown immense promise in both preclinical and clinical trials. However, as cell therapies continue to evolve, cost-effective and high-throughput screening assays are needed to assess the proliferation, migration, and efficacy of these cells. In this study, we developed a bioinspired brain matrix for the evaluation of engineered NSCs. Importantly, this matrix is easy to fabricate, scalable, and allows for sterile real-time, noninvasive imaging using our custom bioreactor. We then utilized the bioinspired brain matrix system to answer key questions around the tumor-homing migration and efficacy of engineered NSC therapies that are challenging to address with traditional models.

13.
Mol Ther ; 28(7): 1614-1627, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32402245

RESUMO

The conversion of human fibroblasts into personalized induced neural stem cells (iNSCs) that actively seek out tumors and deliver cytotoxic agents is a highly promising approach for treating various types of cancer. However, the ability to generate iNSCs from the skin of cancer patients has not been explored. Here, we take an important step toward clinical application by generating iNSCs from skin biopsies of human patients undergoing treatment for the aggressive brain cancer, glioblastoma (GBM). We then utilized a panel of functional and genomic studies to investigate the efficacy and tumor-homing capacity of these patient-derived cells, as well as genomic analysis, to characterize the impact of interpatient variability on this personalized cell therapy. From the skin-tissue biopsies, we established fibroblasts and transdifferentiated the cells into iNSCs. Genomic and functional testing revealed marked variability in growth rates, therapeutic agent production, and gene expression during fibroblast-to-iNSC conversion among patient lines. In vivo testing showed patient-derived iNSCs home to tumors, yet rates and expression of homing-related pathways varied among patients. With the use of surgical-resection mouse models of invasive human cluster of differentiation 133+ (CD133+) GBM cells and serial kinetic imaging, we found that "high-performing" patient-derived iNSC lines reduced the volume of GBM cells 60-fold and extended survival from 28 to 45 days. Treatment with "low-performing" patient lines had minimal effect on tumor growth, but the anti-tumor effect could be rescued by increasing the intracavity dose. Together, these data show, for the first time, that tumor-homing iNSCs can be generated from the skin of cancer patients and efficaciously suppress tumor growth. We also begin to define genetic markers that could be used to identify cells that will contain the most effective attributes for tumor homing and kill in human patients, including high gene expression of the semaphorin-3B (SEMA3B), which is known to be involved in neuronal cell migration. These studies should serve as an important guide toward clinical GBM therapy, where the personalized nature of optimized iNSC therapy has the potential to avoid transplant rejection and maximize treatment durability.


Assuntos
Glioblastoma/terapia , Células-Tronco Pluripotentes Induzidas/transplante , Glicoproteínas de Membrana/genética , Células-Tronco Neurais/transplante , Semaforinas/genética , Pele/citologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Transdiferenciação Celular , Células Cultivadas , Feminino , Fibroblastos/citologia , Glioblastoma/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Camundongos , Células-Tronco Neurais/citologia , Cultura Primária de Células , Ratos , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Control Release ; 323: 282-292, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32335153

RESUMO

Glioblastoma (GBM) is a highly aggressive and heterogeneous form of brain cancer. Genotypic and phenotypic heterogeneity drives drug resistance and tumor recurrence. Combination chemotherapy could overcome drug resistance; however, GBM's location behind the blood-brain barrier severely limits chemotherapeutic options. Interstitial therapy, delivery of chemotherapy locally to the tumor site, via a biodegradable polymer implant can overcome the blood-brain barrier and increase the range of drugs available for therapy. Ideal drug candidates for interstitial therapy are those that are potent against GBM and work in combination with both standard-of-care therapy and new precision medicine targets. Herein we evaluated paclitaxel for interstitial therapy, investigating the effect of combination with both temozolomide, a clinical standard-of-care chemotherapy for GBM, and everolimus, a mammalian target of rapamycin (mTOR) inhibitor that modulates aberrant signaling present in >80% of GBM patients. Tested against a panel of GBM cell lines in vitro, paclitaxel was found to be effective at nanomolar concentrations, complement therapy with temozolomide, and synergize strongly with everolimus. The strong synergism seen with paclitaxel and everolimus was then explored in vivo. Paclitaxel and everolimus were separately formulated into fibrous scaffolds composed of acetalated dextran, a biodegradable polymer with tunable degradation rates, for implantation in the brain. Acetalated dextran degradation rates were tailored to attain matching release kinetics (~3% per day) of both paclitaxel and everolimus to maintain a fixed combination ratio of the two drugs. Combination interstitial therapy of both paclitaxel and everolimus significantly reduced GBM growth and improved progression free survival in two clinically relevant orthotopic models of GBM resection and recurrence. This work illustrates the advantages of synchronized interstitial therapy of paclitaxel and everolimus for post-surgical tumor control of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Combinação de Medicamentos , Sinergismo Farmacológico , Glioblastoma/tratamento farmacológico , Humanos , Camundongos , Camundongos Nus , Medicina de Precisão , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Mater Sci Eng C Mater Biol Appl ; 111: 110846, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32279815

RESUMO

Tumoricidal neural stem cells (NSCs) are an emerging therapy to combat glioblastoma (GBM). This therapy employs genetically engineered NSCs that secrete tumoricidal agents to seek out and kill tumor foci remaining after GBM surgical resection. Biomaterial scaffolds have previously been utilized to deliver NSCs to the resection cavity. Here, we investigated the impact of scaffold degradation rate on NSC persistence in the brain resection cavity. Composite acetalated dextran (Ace-DEX) gelatin electrospun scaffolds were fabricated with two distinct degradation profiles created by changing the ratio of cyclic to acyclic acetal coverage of Ace-DEX. In vitro, fast degrading scaffolds were fully degraded by one week, whereas slow degrading scaffolds had a half-life of >56 days. The scaffolds also retained distinct degradation profiles in vivo. Two different NSC lines readily adhered to and remained viable on Ace-DEX gelatin scaffolds, in vitro. Therapeutic NSCs secreting tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) had the same TRAIL output as tissue culture treated polystyrene (TCPS) when seeded on both scaffolds. Furthermore, secreted TRAIL was found to be highly potent against the human derived GBM cell line, GBM8, in vitro. Firefly luciferase expressing NSCs were seeded on scaffolds, implanted in a surgical resection cavity and their persistence in the brain was monitored by bioluminescent imaging (BLI). NSC loaded scaffolds were compared to a direct injection (DI) of NSCs in suspension, which is the current clinical approach to NSC therapy for GBM. Fast and slow degrading scaffolds enhanced NSC implantation efficiency 2.87 and 3.08-fold over DI, respectively. Interestingly, scaffold degradation profile did not significantly impact NSC persistence. However, persistence and long-term survival of NSCs was significantly greater for both scaffolds compared to DI, with scaffold implanted NSCs still detected by BLI at day 120 in most mice. Overall, these results highlight the benefit of utilizing a scaffold for application of tumoricidal NSC therapy for GBM.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Células-Tronco Neurais/patologia , Alicerces Teciduais/química , Acetilação , Animais , Linhagem Celular , Sobrevivência Celular , Reagentes de Ligações Cruzadas/química , Dextranos/química , Feminino , Gelatina/química , Camundongos Nus , Temperatura
16.
ACS Appl Mater Interfaces ; 12(17): 19345-19356, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32252517

RESUMO

Current interstitial therapies for glioblastoma can overcome the blood-brain barrier but fail to optimally release therapy at a rate that stalls cancer reoccurrence. To address this lapse, acetalated dextran (Ace-DEX) nanofibrous scaffolds were used for their unique degradation rates that translate to a broad range of drug release kinetics. A distinctive range of drug release rates was illustrated via electrospun Ace-DEX or poly(lactic acid) (PLA) scaffolds. Scaffolds composed of fast, medium, and slow degrading Ace-DEX resulted in 14.1%, 2.9%, and 1.3% paclitaxel released per day. To better understand the impact of paclitaxel release rate on interstitial therapy, two clinically relevant orthotopic glioblastoma mouse models were explored: (1) a surgical model of resection and recurrence (resection model) and (2) a distant metastasis model. The effect of unique drug release was illustrated in the resection model when a 78% long-term survival was observed with combined fast and slow release scaffolds, in comparison to a survival of 20% when the same dose is delivered at a medium release rate. In contrast, only the fast release rate scaffold displayed treatment efficacy in the distant metastasis model. Additionally, the acid-sensitive Ace-DEX scaffolds were shown to respond to the lower pH conditions associated with GBM tumors, releasing more paclitaxel in vivo when a tumor was present in contrast to nonacid sensitive PLA scaffolds. The unique range of tunable degradation and stimuli-responsive nature makes Ace-DEX a promising drug delivery platform to improve interstitial therapy for glioblastoma.


Assuntos
Antineoplásicos/uso terapêutico , Dextranos/química , Portadores de Fármacos/química , Glioblastoma/tratamento farmacológico , Paclitaxel/uso terapêutico , Poliésteres/química , Animais , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Feminino , Humanos , Concentração de Íons de Hidrogênio , Camundongos Nus , Metástase Neoplásica/tratamento farmacológico , Paclitaxel/farmacocinética , Prevenção Secundária/métodos , Microambiente Tumoral/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Mol Ther ; 28(4): 1056-1067, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32109370

RESUMO

Pre-clinical and clinical studies have shown that engineered tumoricidal neural stem cells (tNSCs) are a promising treatment strategy for the aggressive brain cancer glioblastoma (GBM). Yet, stabilizing human tNSCs within the surgical cavity following GBM resection is a significant challenge. As a critical step toward advancing engineered human NSC therapy for GBM, we used a preclinical variant of the clinically utilized NSC line HB1.F3.CD and mouse models of human GBM resection/recurrence to identify a polymeric scaffold capable of maximizing the transplant, persistence, and tumor kill of NSC therapy for post-surgical GBM. Using kinetic bioluminescence imaging, we found that tNSCs delivered into the mouse surgical cavity wall by direct injection persisted only 3 days. We found that delivery of tNSCs into the cavity on nanofibrous electrospun poly-l-lactic acid scaffolds extended tNSC persistence to 8 days. Modifications to fiber surface coating, diameter, and morphology of the scaffold failed to significantly extend tNSC persistence in the cavity. In contrast, tNSCs delivered into the post-operative cavity on gelatin matrices (GEMs) persisted 8-fold longer as compared to direct injection. GEMs remained permissive to tumor-tropic homing, as tNSCs migrated off the scaffolds and into invasive tumor foci both in vitro and in vivo. To mirror envisioned human brain tumor trials, we engineered tNSCs to express the prodrug/enzyme thymidine kinase (tNSCstk) and transplanted the therapeutic cells in the post-operative cavity of mice bearing resected orthotopic patient-derived GBM xenografts. Following administration of the prodrug ganciclovir, residual tumor volumes in mice receiving GEM/tNSCs were reduced by 10-fold at day 35, and median survival was extended from 31 to 46 days. Taken together, these data begin to define design parameters for effective scaffold/tNSC composites and suggest a new approach to maximizing the efficacy of tNSC therapy in human patient trials.


Assuntos
Neoplasias Encefálicas/terapia , Ganciclovir/administração & dosagem , Glioblastoma/terapia , Células-Tronco Neurais/transplante , Timidina Quinase/metabolismo , Animais , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Linhagem Celular Tumoral , Terapia Combinada , Ganciclovir/farmacologia , Glioblastoma/patologia , Glioblastoma/cirurgia , Humanos , Medições Luminescentes , Camundongos , Células-Tronco Neurais/metabolismo , Poliésteres/química , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacologia , Alicerces Teciduais/química , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
18.
ACS Biomater Sci Eng ; 6(7): 3762-3777, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33463324

RESUMO

Glioblastoma (GBM) is the most common primary brain tumor and has a poor prognosis; as such, there is an urgent need to develop innovative new therapies. Tumoricidal stem cells are an emerging therapy that has the potential to combat limitations of traditional local and systemic chemotherapeutic strategies for GBM by providing a source for high, sustained concentrations of tumoricidal agents locally to the tumor. One major roadblock for tumoricidal stem cell therapy is that the persistence of tumoricidal stem cells injected as a cell suspension into the GBM surgical resection cavity is limited. Polymeric biomaterial scaffolds have been utilized to enhance the delivery of tumoricidal stem cells in the surgical resection cavity and extend their persistence in the brain, ultimately increasing their therapeutic efficacy against GBM. In this review, we examine three main scaffold categories explored for tumoricidal stem cell therapy: microcapsules, hydrogels, and electrospun scaffolds. Furthermore, considering the significant impact of surgery on the brain and recurrent GBM, we survey a brief history of orthotopic models of GBM surgical resection.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Materiais Biocompatíveis , Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Humanos , Recidiva Local de Neoplasia , Células-Tronco
19.
Nano Lett ; 19(3): 1701-1705, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30773888

RESUMO

Mesenchymal stem cell (MSC) has been increasingly applied to cancer therapy because of its tumor-tropic capability. However, short retention at target tissue and limited payload option hinder the progress of MSC-based cancer therapy. Herein, we proposed a hybrid spheroid/nanomedicine system, comprising MSC spheroid entrapping drug-loaded nanocomposite, to address these limitations. Spheroid formulation enhanced MSC's tumor tropism and facilitated loading of different types of therapeutic payloads. This system acted as an active drug delivery platform seeking and specifically targeting glioblastoma cells. It enabled effective delivery of combinational protein and chemotherapeutic drugs by engineered MSC and nanocomposite, respectively. In an in vivo migration model, the hybrid spheroid showed higher nanocomposite retention in the tumor tissue compared with the single MSC approach, leading to enhanced tumor inhibition in a heterotopic glioblastoma murine model. Taken together, this system integrates the merits of cell- and nanoparticle- mediated drug delivery with the tumor-homing characteristics of MSC to advance targeted combinational cancer therapy.


Assuntos
Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Células-Tronco Mesenquimais/química , Esferoides Celulares/transplante , Engenharia Celular/tendências , Movimento Celular/efeitos dos fármacos , Terapia Combinada , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Células-Tronco Mesenquimais/citologia , Nanomedicina/tendências , Esferoides Celulares/química , Tropismo Viral/efeitos dos fármacos
20.
J Vis Exp ; (137)2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-30059037

RESUMO

Glioblastoma (GBM), the most common and aggressive primary brain cancer, carries a life expectancy of 12-15 months. The short life expectancy is due in part to the inability of the current treatment, consisting of surgical resection followed by radiation and chemotherapy, to eliminate invasive tumor foci. Treatment of these foci may be improved with tumoricidal human mesenchymal stem cells (MSCs). MSCs exhibit potent tumor tropism and can be engineered to express therapeutic proteins that kill tumor cells. Advancements in preclinical models indicate that surgical resection induces premature MSC loss and reduces therapeutic efficacy. Efficacy of MSC treatment can be improved by seeding MSCs on a biodegradable poly(lactic acid) (PLA) scaffold. MSC delivery into the surgical resection cavity on a PLA scaffold restores cell retention, persistence, and tumor killing. To study the effects of MSC-seeded PLA implantation on GBM, an accurate preclinical model is needed. Here we provide a preclinical surgical protocol for image-guided tumor resection of GBM in immune-deficient mice followed by MSC-seeded scaffold implantation. MSCs are engineered with lentiviral constructs to constitutively express and secrete therapeutic TNFα-related apoptosis-inducing ligand (TRAIL) as well as green fluorescent protein (GFP) to allow fluorescent tracking. Similarly, the U87 tumor cells are engineered to express mCherry and firefly luciferase, providing dual fluorescent/luminescent tracking. While currently used for investigating stem cell mediated delivery of therapeutics, this protocol could be modified to investigate the impact of surgical resection on other GBM interventions.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Glioblastoma/diagnóstico por imagem , Glioblastoma/cirurgia , Células-Tronco/metabolismo , Alicerces Teciduais/química , Animais , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Células-Tronco/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...