Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmacogenomics ; 11(12): 1669-75, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21142909

RESUMO

At the 5th FDA-Drug Industry Association (DIA) Workshop on 'Pharmacogenomics in Drug Development and Regulatory Decision Making', track four focused on the current thinking and issues in the co-development of therapeutic drugs or biologics, and their companion diagnostic products. Identification and validation of genomic and other biomarkers are becoming important components of drug-development strategies, and recent successes show the power of personalized approaches to change the benefit-risk paradigm for new drugs.


Assuntos
Biomarcadores Farmacológicos , Técnicas e Procedimentos Diagnósticos , Desenho de Fármacos , Indústria Farmacêutica , Regulamentação Governamental , Farmacogenética/métodos , Biomarcadores Farmacológicos/análise , Técnicas e Procedimentos Diagnósticos/normas , Indústria Farmacêutica/normas , Farmacogenética/legislação & jurisprudência , Estados Unidos , United States Food and Drug Administration
2.
Nat Rev Drug Discov ; 9(6): 435-45, 2010 06.
Artigo em Inglês | MEDLINE | ID: mdl-20514070

RESUMO

Heterogeneity in the underlying mechanisms of disease processes and inter-patient variability in drug responses are major challenges in drug development. To address these challenges, biomarker strategies based on a range of platforms, such as microarray gene-expression technologies, are increasingly being applied to elucidate these sources of variability and thereby potentially increase drug development success rates. With the aim of enhancing understanding of the regulatory significance of such biomarker data by regulators and sponsors, the US Food and Drug Administration initiated a programme in 2004 to allow sponsors to submit exploratory genomic data voluntarily, without immediate regulatory impact. In this article, a selection of case studies from the first 5 years of this programme - which is now known as the voluntary exploratory data submission programme, and also involves collaboration with the European Medicines Agency - are discussed, and general lessons are highlighted.


Assuntos
Aprovação de Drogas , Perfilação da Expressão Gênica , United States Food and Drug Administration , Alanina Transaminase/sangue , Azetidinas/efeitos adversos , Azetidinas/uso terapêutico , Benzilaminas/efeitos adversos , Benzilaminas/uso terapêutico , Carcinoma de Células Renais/diagnóstico , Europa (Continente) , Fluoruracila/efeitos adversos , Marcadores Genéticos , Humanos , Cooperação Internacional , Neoplasias Renais/diagnóstico , Transplante de Rim , Farmacogenética , Piperazinas/farmacocinética , Piperazinas/uso terapêutico , Cloridrato de Prasugrel , Medicina de Precisão , Tiofenos/farmacocinética , Tiofenos/uso terapêutico , Estados Unidos
3.
Pharmacogenomics ; 10(1): 127-36, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19102722

RESUMO

The 4th US FDA/Industry Workshop on Pharmacogenomics in Drug Development and Regulatory Decision Making, was held in MD, USA, on December 10-12, 2007. One of the breakout sessions of the workshop focused on the regulatory issues around codevelopment of drugs and companion diagnostics. This session used hypothetical case studies as focal points for discussion of current thought and critical issues for both industry and the FDA in this evolving field. The panel and the audience discussed the evolution of the FDA's thinking on the regulatory path for companion diagnostics since the release of the April 2005 draft Drug Test Codevelopment Concept Paper and the issues faced by industry in attempting codevelopment efforts. This session provided an opportunity to allow an exchange of ideas between the FDA and industry and to identify critical issues that need further discussion in this important and evolving field.


Assuntos
Ensaios Clínicos como Assunto , Tomada de Decisões , Técnicas e Procedimentos Diagnósticos , Desenho de Fármacos , Indústria Farmacêutica , Farmacogenética , Ensaios Clínicos como Assunto/normas , Técnicas e Procedimentos Diagnósticos/normas , Indústria Farmacêutica/normas , Humanos , Farmacogenética/normas , Formulação de Políticas , Estados Unidos , United States Food and Drug Administration
4.
Bioconjug Chem ; 16(2): 346-53, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15769088

RESUMO

The anti-MUC1 antibody, CTM01, has been chosen to target the potently cytotoxic calicheamicin antitumor antibiotics to solid tumors of epithelial origin that express this antigen. Earlier calicheamicin conjugates relied on the attachment of a hydrazide derivative to the oxidized carbohydrates that occur naturally on antibodies. This produced a "carbohydrate conjugate" capable of releasing active drug by hydrolysis in the lysosomes where the pH is low. Conjugates have now been made that are formed by reacting a calicheamicin derivative containing an activated ester with the lysines of antibodies. This gives an "amide conjugate" that is stable to hydrolysis, leaving the disulfide that is present in all calicheamicin conjugates as the only likely site of drug release from the conjugate. As previously shown for the carbohydrate conjugate, this amide conjugate of CTM01 produces complete regressions of xenograft tumors at doses of 300 microg/kg (calicheamicin equivalents) given three times. This indicates that hydrolytic drug release is not necessary for potent, selective cytotoxicity for calicheamicin conjugates of CTM01. Although the unconjugated calicheamicins are in general less active in cells expressing the multidrug resistance phenotype, both in vitro and in vivo results of studies reported here suggest that the efficacy of the calicheamicins toward such tumors is unexpectedly enhanced by antibody conjugation, especially for the "amide conjugate". These hydrolytically stable conjugates are also active toward cisplatin-resistant ovarian carcinoma cells as well. Such studies indicate that the calicheamicin amide conjugate of CTM01 may have potential for the treatment of MUC1-positive solid tumors, including some types of resistant tumors.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Imunoconjugados/química , Mucina-1/imunologia , Neoplasias/tratamento farmacológico , Fragmentos de Peptídeos/imunologia , Trissacarídeos/uso terapêutico , Amidas , Animais , Anticorpos Monoclonais/química , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/química , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Estabilidade de Medicamentos , Enedi-Inos , Humanos , Imunoconjugados/uso terapêutico , Camundongos , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Transplante Heterólogo , Resultado do Tratamento , Trissacarídeos/química
5.
Bioconjug Chem ; 16(2): 354-60, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15769089

RESUMO

Murine CTM01 is an internalizing murine IgG(1) monoclonal antibody that recognizes the MUC1 antigen expressed on many solid tumors of epithelial origin. Calicheamicin conjugates of this antibody have previously been shown to be potent, selective antitumor agents in preclinical models. A conjugate has now been made with a genetically engineered human version of this antibody, hCTM01. The hCTM01 is an IgG(4) isotype, has an immunoaffinity approximately 30% higher than mCTM01 by competitive RIA, and is efficiently internalized into target cells. The hCTM01-NAc-gamma calicheamicin DM amide conjugate, referred to as CMB-401, shows targeted killing of MUC1-expressing cells in vitro and produces pronounced dose-related antitumor effects over an 8-fold dose range against a MUC1-expressing, ovarian xenograft tumor, OvCar-3. The specificity of CMB-401 was confirmed by comparing its antitumor effects with those of an isotype-matched nonspecific conjugate against the MX-1 breast carcinoma. CMB-401, given either ip or iv, was highly active in these models in single and multiple dose regimens and gave complete regressions at the highest doses examined with good overall therapeutic ratios. CMB-401 also gave good antitumor effects at similar doses with a cisplatin-resistant MUC1-expressing cell line.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Imunoconjugados/química , Mucina-1/imunologia , Neoplasias Ovarianas/tratamento farmacológico , Fragmentos de Peptídeos/imunologia , Trissacarídeos/uso terapêutico , Animais , Anticorpos Monoclonais/química , Linhagem Celular Tumoral , Cisplatino , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Enedi-Inos , Feminino , Humanos , Imunoconjugados/uso terapêutico , Camundongos , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Transplante Heterólogo , Resultado do Tratamento , Trissacarídeos/química , Carga Tumoral/efeitos dos fármacos
6.
Bioconjug Chem ; 13(1): 40-6, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11792177

RESUMO

The anti-CD33 antibody, P67.6, has been chosen to target the potently cytotoxic calicheamicin antitumor antibiotics to acute myeloid leukemia (AML) due to the presence of CD33 on >80% of patient samples and its lack of expression outside the myeloid cell lineages, especially its lack of expression on pluripotent stem cells. Previous calicheamicin conjugates relied on the attachment of a hydrazide derivative to the oxidized carbohydrates that occur naturally on antibodies. This results in a "carbohydrate conjugate" capable of releasing active drug by hydrolysis of a hydrazone bond in the lysozomes where the pH is low. Conjugates have now been made that are formed by reacting a calicheamicin derivative containing an activated ester with the lysines of antibodies. This results in an "amide conjugate" that is stable to hydrolysis, leaving the disulfide that is present in all calicheamicin conjugates as the likely site of drug release from the conjugate. In this article, these two classes of calicheamicin-antibody conjugates are compared for potential use in AML with the anti-CD33 antibody P67.6. Conjugates of P67.6 are shown to require the site of hydrolytic release afforded by the carbohydrate conjugates in order to retain good potency and selectivity in vitro, in vivo, and ex vivo. The P67.6 carbohydrate conjugate of calicheamicin is selectively cytotoxic at <0.006 ng/mL of calicheamicin equivalents (cal equiv) toward HL-60 promyelocytic leukemia cells in tissue culture. Long-term, tumor-free survivors are seen in xenograft models when mice bearing HL-60 subcutaneous tumors are treated with the P67.6 carbohydrate conjugate at a dose of 300 microg/kg cal equiv given three times. This conjugate also selectively inhibits the formation of colonies from AML marrow samples at 2 ng/mL cal equiv. The P67.6 carbohydrate conjugate of calicheamicin therefore appears to have promise as an antibody-targeted chemotherapeutic agent for CD33-positive diseases such as AML.


Assuntos
Antibacterianos/química , Antibacterianos/uso terapêutico , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/uso terapêutico , Anticorpos Monoclonais/química , Anticorpos Monoclonais/uso terapêutico , Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/imunologia , Imunotoxinas/química , Imunotoxinas/uso terapêutico , Leucemia Mieloide/tratamento farmacológico , Doença Aguda , Aminoglicosídeos , Animais , Células HL-60 , Humanos , Imunoquímica , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Nus , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta
7.
Bioconjug Chem ; 13(1): 47-58, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11792178

RESUMO

CD33 is expressed by acute myeloid leukemia (AML) cells in >80% of patients but not by normal hematopoietic stem cells, suggesting that elimination of CD33(+) cells may be therapeutically beneficial. A conjugate of a calicheamicin hydrazide derivative attached via hydrazone formation to the oxidized carbohydrates of the anti-CD33 murine antibody P67.6 had been chosen for use in AML prior to humanization of this antibody. However, the CDR-grafted humanized P67.6 could not be used to make the carbohydrate conjugate because of the unexpected sensitivity of this antibody to periodate oxidation. Exploration of a series of bifunctional linkers resulted in a new class of calicheamicin conjugates, termed the hybrid conjugates, that allows for the attachment of the calicheamicin to lysines but incorporates the site of hydrolytic release, a hydrazone, previously shown to be required for activity. The optimized conjugate chosen for clinical trials, gemtuzumab ozogamicin ("gem-ozo", Mylotarg, formerly designated CMA-676), was significantly more potent and selective than the carbohydrate conjugate it replaced. It was selectively cytotoxic to HL-60 leukemia cells in tissue culture with an IC(50) in the low to sub-pg cal/mL range (cal = calicheamicin equivalents). Doses of gem-ozo as low as 50 microg cal/kg given three times to mice bearing HL-60 xenografts routinely resulted in long-term, tumor-free survivors, while a nonbinding control conjugate was relatively inactive. Gem-ozo at a concentration of 2 to 10 ng cal/mL selectively inhibited leukemia colony formation by marrow cells from a significant proportion of AML patients. Gem-ozo has also shown significant activity against AML in Phase II trials and is the first antibody-targeted chemotherapeutic agent approved by the FDA.


Assuntos
Aminoglicosídeos , Antibacterianos/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/imunologia , Imunotoxinas/uso terapêutico , Leucemia Mieloide/tratamento farmacológico , Doença Aguda , Animais , Anticorpos Monoclonais Humanizados , Reagentes de Ligações Cruzadas , Gemtuzumab , Células HL-60 , Humanos , Indicadores e Reagentes , Camundongos , Camundongos Nus , Transplante de Neoplasias , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA