Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(1)2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275957

RESUMO

Classical swine fever (CSF) has been eradicated from Western and Central Europe but remains endemic in parts of Central and South America, Asia, and the Caribbean. CSF virus (CSFV) has been endemic in Cuba since 1993, most likely following an escape of the highly virulent Margarita/1958 strain. In recent years, chronic and persistent infections with low-virulent CSFV have been observed. Amino acid substitutions located in immunodominant epitopes of the envelope glycoprotein E2 of the attenuated isolates were attributed to positive selection due to suboptimal vaccination and control. To obtain a complete picture of the mutations involved in attenuation, we applied forward and reverse genetics using the evolutionary-related low-virulent CSFV/Pinar del Rio (CSF1058)/2010 (PdR) and highly virulent Margarita/1958 isolates. Sequence comparison of the two viruses recovered from experimental infections in pigs revealed 40 amino acid differences. Interestingly, the amino acid substitutions clustered in E2 and the NS5A and NS5B proteins. A long poly-uridine sequence was identified previously in the 3' untranslated region (UTR) of PdR. We constructed functional cDNA clones of the PdR and Margarita strains and generated eight recombinant viruses by introducing single or multiple gene fragments from Margarita into the PdR backbone. All chimeric viruses had comparable replication characteristics in porcine monocyte-derived macrophages. Recombinant PdR viruses carrying either E2 or NS5A/NS5B of Margarita, with 36 or 5 uridines in the 3'UTR, remained low virulent in 3-month-old pigs. The combination of these elements recovered the high-virulent Margarita phenotype. These results show that CSFV evolution towards attenuated variants in the field involved mutations in both structural and non-structural proteins and the UTRs, which act synergistically to determine virulence.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Animais , Suínos , Virulência/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/química , Mutação
2.
Virulence ; 12(1): 2037-2049, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34339338

RESUMO

The prevalence of low virulence classical swine fever virus (CSFV) strains makes viral eradication difficult in endemic countries. However, the determinants for natural CSFV attenuation and persistence in the field remain unidentified. The aim of the present study was to assess the role of the RNase activity of CSFV Erns in pathogenesis, immune response, persistent infection, and viral transmission in pigs. To this end, a functional cDNA clone pPdR-H30K-36U with an Erns lacking RNase activity was constructed based on the low virulence CSFV field isolate Pinar de Rio (PdR). Eighteen 5-day-old piglets were infected with vPdR-H30K-36U. Nine piglets were introduced as contacts. The vPdR-H30K-36U virus was attenuated in piglets compared to the parental vPdR-36U. Only RNA traces were detected in sera and body secretions and no virus was isolated from tonsils, showing that RNase inactivation may reduce CSFV persistence and transmissibility. The vPdR-H30K-36U mutant strongly activated the interferon-α (IFN-α) production in plasmacytoid dendritic cells, while in vivo, the IFN-α response was variable, from moderate to undetectable depending on the animal. This suggests a role of the CSFV Erns RNase activity in the regulation of innate immune responses. Infection with vPdR-H30K-36U resulted in higher antibody levels against the E2 and Erns glycoproteins and in enhanced neutralizing antibody responses when compared with vPdR-36U. These results pave the way toward a better understanding of viral attenuation mechanisms of CSFV in pigs. In addition, they provide novel insights relevant for the development of DIVA vaccines in combination with diagnostic assays for efficient CSF control.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Imunidade Humoral , Ribonucleases , Animais , Peste Suína Clássica/imunologia , Peste Suína Clássica/transmissão , Vírus da Febre Suína Clássica/enzimologia , Infecção Persistente , Ribonucleases/genética , Suínos , Virulência
3.
J Virol ; 94(2)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31645448

RESUMO

Low-virulence classical swine fever virus (CSFV) strains make CSF eradication particularly difficult. Few data are available on the molecular determinants of CSFV virulence. The aim of the present study was to assess a possible role for CSFV virulence of a unique, uninterrupted 36-uridine (poly-U) sequence found in the 3' untranslated region (3' UTR) of the low-virulence CSFV isolate Pinar de Rio (PdR). To this end, a pair of cDNA-derived viruses based on the PdR backbone were generated, one carrying the long poly-U insertion in the 3' UTR (vPdR-36U) and the other harboring the standard 5 uridines at this position (vPdR-5U). Two groups of 20 5-day-old piglets were infected with vPdR-36U and vPdR-5U. Ten contact piglets were added to each group. Disease progression, virus replication, and immune responses were monitored for 5 weeks. The vPdR-5U virus was significantly more virulent than the vPdR-36U virus, with more severe disease, higher mortality, and significantly higher viral loads in serum and body secretions, despite similar replication characteristics in cell culture. The two viruses were transmitted to all contact piglets. Ninety percent of the piglets infected with vPdR-36U seroconverted, while only one vPdR-5U-infected piglet developed antibodies. The vPdR-5U-infected piglets showed only transient alpha interferon (IFN-α) responses in serum after 1 week of infection, while the vPdR-36U-infected piglets showed sustained IFN-α levels during the first 2 weeks. Taken together, these data show that the 3' UTR poly-U insertion acquired by the PdR isolate reduces viral virulence and activates the innate and humoral immune responses without affecting viral transmission.IMPORTANCE Classical swine fever (CSF), a highly contagious viral disease of pigs, is still endemic in some countries of Asia and Central and South America. Considering that the 3' untranslated region (3' UTR) plays an important role in flavivirus replication, the present study showed for the first time that a long polyuridine sequence acquired in the 3' UTR by an endemic CSFV isolate can activate immunity, control viral replication, and modulate disease in piglets. Our findings provide new avenues for the development of novel vaccines against infections with CSF virus and other flaviviruses. Knowledge of molecular virulence determinants is also relevant for future development of rapid and efficient diagnostic tools for the prediction of the virulence of field isolates and for efficient CSF control.


Assuntos
Regiões 3' não Traduzidas/imunologia , Vírus da Febre Suína Clássica , Peste Suína Clássica , Mutagênese Insercional , Poli U , RNA Viral , Animais , Peste Suína Clássica/genética , Peste Suína Clássica/imunologia , Peste Suína Clássica/patologia , Vírus da Febre Suína Clássica/genética , Vírus da Febre Suína Clássica/imunologia , Vírus da Febre Suína Clássica/patogenicidade , Humanos , Interferon-alfa/imunologia , Poli U/genética , Poli U/imunologia , RNA Viral/genética , RNA Viral/imunologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...