Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(28): e202305086, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37170964

RESUMO

ß-NaYF4 nanocrystals are a popular class of optical materials. They can be doped with optically active lanthanide ions and shaped into core-multi-shell geometries with controlled dopant distributions. Here, we follow the synthesis of ß-NaYF4 nanocrystals from α-NaYF4 precursor particles using in situ small-angle and wide-angle X-ray scattering and ex situ electron microscopy. We observe an evolution from a unimodal particle size distribution to bimodal, and eventually back to unimodal. The final size distribution is narrower in absolute numbers than the initial distribution. These peculiar growth dynamics happen in large part before the α-to-ß phase transformation. We propose that the splitting of the size distribution is caused by variations in the reactivity of α-NaYF4 precursor particles, potentially due to inter-particle differences in stoichiometry. Rate equation modeling confirms that a continuous distribution of reactivities can result in the observed particle growth dynamics.

2.
Nano Lett ; 21(13): 5760-5766, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34133188

RESUMO

Broadening of multiexciton emission from colloidal quantum dots (QDs) at room temperature is important for their use in high-power applications, but an in-depth characterization has not been possible until now. We present and apply a novel spectroscopic method to quantify the biexciton line width and biexciton binding energy of single CdSe/CdS/ZnS colloidal QDs at room temperature. In our method, which we term "cascade spectroscopy", we select emission events from the biexciton cascade and reconstruct their spectrum. The biexciton has an average emission line width of 86 meV on the single-QD scale, similar to that of the exciton. Variations in the biexciton repulsion (Eb = 4.0 ± 3.1 meV; mean ± standard deviation of 15 QDs) are correlated with but are more narrowly distributed than variations in the exciton energy (10.0 meV standard deviation). Using a simple quantum-mechanical model, we conclude that inhomogeneous broadening in our sample is primarily due to variations in the CdS shell thickness.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Compostos de Selênio , Análise Espectral , Temperatura
3.
ACS Nano ; 15(4): 7216-7225, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33759503

RESUMO

Trap states can strongly affect semiconductor nanocrystals, by quenching, delaying, and spectrally shifting the photoluminescence (PL). Trap states have proven elusive and difficult to study in detail at the ensemble level, let alone in the single-trap regime. CdSe nanoplatelets (NPLs) exhibit significant fractions of long-lived "delayed emission" and near-infrared "trap emission". We use these two spectroscopic handles to study trap states at the ensemble and the single-particle level. We find that reversible hole trapping leads to both delayed and trap PL, involving the same trap states. At the single-particle level, reversible trapping induces exponential delayed PL and trap PL, with lifetimes ranging from 40 to 1300 ns. In contrast with exciton PL, single-trap PL is broad and shows spectral diffusion and strictly single-photon emission. Our results highlight the large inhomogeneity of trap states, even at the single-particle level.

4.
Nano Lett ; 21(6): 2487-2496, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33661650

RESUMO

Hot-injection synthesis is renowned for producing semiconductor nanocolloids with superb size dispersions. Burst nucleation and diffusion-controlled size focusing during growth have been invoked to rationalize this characteristic yet experimental evidence supporting the pertinence of these concepts is scant. By monitoring a CdSe synthesis in-situ with X-ray scattering, we find that nucleation is an extended event that coincides with growth during 15-20% of the reaction time. Moreover, we show that size focusing outpaces predictions of diffusion-limited growth. This observation indicates that nanocrystal growth is dictated by the surface reactivity, which drops sharply for larger nanocrystals. Kinetic reaction simulations confirm that this so-called superfocusing can lengthen the nucleation period and promote size focusing. The finding that narrow size dispersions can emerge from the counteracting effects of extended nucleation and reaction-limited size focusing ushers in an evidence-based perspective that turns hot injection into a rational scheme to produce monodisperse semiconductor nanocolloids.

5.
Nano Lett ; 21(1): 658-665, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33395305

RESUMO

The luminescence of CuInS2 quantum dots (QDs) is slower and spectrally broader than that of many other types of QDs. The origin of this anomalous behavior is still under debate. Single-QD experiments could help settle this debate, but studies by different groups have yielded conflicting results. Here, we study the photophysics of single core-only CuInS2 and core/shell CuInS2/CdS QDs. Both types of single QDs exhibit broad PL spectra with fluctuating peak position and single-exponential photoluminescence decay with a slow but fluctuating lifetime. Spectral diffusion of CuInS2-based QDs is qualitatively and quantitatively different from CdSe-based QDs. The differences reflect the dipole moment of the CuInS2 excited state and hole localization on a preferred site in the QD. Our results unravel the highly dynamic photophysics of CuInS2 QDs and highlight the power of the analysis of single-QD property fluctuations.

6.
J Phys Chem C Nanomater Interfaces ; 124(14): 8047-8054, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32421082

RESUMO

Metal-halide perovskite nanocrystals show promise as the future active material in photovoltaics, lighting, and other optoelectronic applications. The appeal of these materials is largely due to the robustness of the optoelectronic properties to structural defects. The photoluminescence quantum yield (PLQY) of most types of perovskite nanocrystals is nevertheless below unity, evidencing the existence of nonradiative charge-carrier decay channels. In this work, we experimentally elucidate the nonradiative pathways in CsPbBr3 nanoplatelets, before and after chemical treatment with PbBr2 that improves the PLQY. A combination of picosecond streak camera and nanosecond time-correlated single-photon counting measurements is used to probe the excited-state dynamics over 6 orders of magnitude in time. We find that up to 40% of the nanoplatelets from a synthesis batch are entirely nonfluorescent and cannot be turned fluorescent through chemical treatment. The other nanoplatelets show fluorescence, but charge-carrier trapping leads to losses that are prevented by chemical treatment. Interestingly, even without chemical treatment, some losses due to trapping are mitigated because trapped carriers spontaneously detrap on nanosecond-to-microsecond timescales. Our analysis shows that multiple nonradiative pathways are active in perovskite nanoplatelets, which are affected differently by chemical treatment with PbBr2. More generally, our work highlights that in-depth studies using a combination of techniques are necessary to understand nonradiative pathways in fluorescent nanocrystals. Such understanding is essential to optimize synthesis and treatment procedures.

7.
J Phys Chem Lett ; 11(12): 4755-4761, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32459489

RESUMO

Bright and fast fluorescence makes semiconductor nanocrystals, or quantum dots (QDs), appealing for applications ranging from biomedical research to display screens. However, a few percent of their fluorescence intensity is surprisingly slow. Research into this "delayed emission" has been scarce, despite undesired consequences for some applications and potential opportunities for others. Here, we characterize the dynamics of delayed emission exhibited by individual CdSe/CdS core/shell QDs and correlate these with changes in the emission spectrum. The delayed-emission intensity from a single QD fluctuates strongly during an experiment of several minutes and is thus not always "on", implying that control over delayed emission may be possible. Periods of bright delayed emission correlate with red-shifted emission spectra. This behavior is consistent with exciton polarization by fluctuating electric fields due to diffusing surface charges, which have been known to cause spectral diffusion in QDs. Our findings thus provide a stepping stone for future efforts to control delayed emission.

8.
ACS Nano ; 13(11): 12880-12893, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31617701

RESUMO

Nanoscale cation exchange (CE) has resulted in colloidal nanomaterials that are unattainable by direct synthesis methods. Aliovalent CE is complex and synthetically challenging because the exchange of an unequal number of host and guest cations is required to maintain charge balance. An approach to control aliovalent CE reactions is the use of a single reactant to both supply the guest cation and extract the host cation. Here, we study the application of GaCl3-L complexes [L = trioctylphosphine (TOP), triphenylphosphite (TPP), diphenylphosphine (DPP)] as reactants in the exchange of Cu+ for Ga3+ in Cu2-xS nanocrystals. We find that noncomplexed GaCl3 etches the nanocrystals by S2- extraction, whereas GaCl3-TOP is unreactive. Successful exchange of Cu+ for Ga3+ is only possible when GaCl3 is complexed with either TPP or DPP. This is attributed to the pivotal role of the Cu2-xS-GaCl3-L activated complex that forms at the surface of the nanocrystal at the onset of the CE reaction, which must be such that simultaneous Ga3+ insertion and Cu+ extraction can occur. This requisite is only met if GaCl3 is bound to a phosphine ligand, with a moderate bond strength, to allow facile dissociation of the complex at the nanocrystal surface. The general validity of this mechanism is demonstrated by using GaCl3-DPP to convert CuInS2 into (Cu,Ga,In)S2 nanocrystals, which increases the photoluminescence quantum yield 10-fold, while blue-shifting the photoluminescence into the NIR biological window. This highlights the general applicability of the mechanistic insights provided by our work.

9.
Nano Lett ; 18(9): 5867-5874, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30095918

RESUMO

The dynamics of photoluminescence (PL) from nanocrystal quantum dots (QDs) is significantly affected by the reversible trapping of photoexcited charge carriers. This process occurs after up to 50% of the absorption events, depending on the type of QD considered, and can extend the time between the photoexcitation and relaxation of the QD by orders of magnitude. Although many optoelectronic applications require QDs assembled into a QD solid, until now, reversible trapping has been studied only in (ensembles of) spatially separated QDs. Here, we study the influence of reversible trapping on the excited-state dynamics of CdSe/CdS core/shell QDs when they are assembled into close-packed "supraparticles". Time- and spectrally resolved photoluminescence (PL) measurements reveal competition among spontaneous emission, reversible charge-carrier trapping, and Förster resonance energy transfer between the QDs. While Förster transfer causes the PL to red-shift over the first 20-50 ns after excitation, reversible trapping stops and even reverses this trend at later times. We can model this behavior with a simple kinetic Monte Carlo simulation by considering that charge-carrier trapping leaves the QDs in a state with zero oscillator strength in which no energy transfer can occur. Our results highlight that reversible trapping significantly affects the energy and charge-carrier dynamics for applications in which QDs are assembled into a QD solid.

10.
J Am Chem Soc ; 140(9): 3434-3442, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29462551

RESUMO

Copper-sulfide nanocrystals can accommodate considerable densities of delocalized valence-band holes, introducing localized surface plasmon resonances (LSPRs) attractive for infrared plasmonic applications. Chemical control over nanocrystal shape, composition, and charge-carrier densities further broadens their scope of potential properties and applications. Although a great deal of control over LSPRs in these materials has been demonstrated, structural complexities have inhibited detailed descriptions of the microscopic chemical processes that transform them from nearly intrinsic to degenerately doped semiconductors. A comprehensive understanding of these transformations will facilitate use of these materials in emerging technologies. Here, we apply spectroelectrochemical potentiometry as a quantitative in situ probe of copper-sulfide nanocrystal Fermi-level energies ( EF) during redox reactions that switch their LSPR bands on and off. We demonstrate spectroscopically indistinguishable LSPR bands in low-chalcocite copper-sulfide nanocrystals with and without lattice cation vacancies and show that cation vacancies are much more effective than surface anions at stabilizing excess free carriers. The appearance of the LSPR band, the shift in EF, and the change in crystal structure upon nanocrystal oxidation are all fully reversible upon addition of outer-sphere reductants. These measurements further allow quantitative comparison of the coupled and stepwise oxidation/cation-vacancy-formation reactions associated with LSPRs in copper-sulfide nanocrystals, highlighting fundamental thermodynamic considerations relevant to technologies that rely on reversible or low-driving-force plasmon generation in semiconductor nanostructures.

11.
J Am Chem Soc ; 139(18): 6411-6421, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28421742

RESUMO

Mid-gap luminescence in copper (Cu+)-doped semiconductor nanocrystals (NCs) involves recombination of delocalized conduction-band electrons with copper-localized holes. Silver (Ag+)-doped semiconductor NCs show similar mid-gap luminescence at slightly (∼0.3 eV) higher energy, suggesting a similar luminescence mechanism, but this suggestion appears inconsistent with the large difference between Ag+ and Cu+ ionization energies (∼1.5 eV), which should make hole trapping by Ag+ highly unfavorable. Here, Ag+-doped CdSe NCs (Ag+:CdSe) are studied using time-resolved variable-temperature photoluminescence (PL) spectroscopy, magnetic circularly polarized luminescence (MCPL) spectroscopy, and time-dependent density functional theory (TD-DFT) to address this apparent paradox. In addition to confirming that Ag+:CdSe and Cu+:CdSe NCs display similar broad PL with large Stokes shifts, we demonstrate that both also show very similar temperature-dependent PL lifetimes and magneto-luminescence. Electronic-structure calculations further predict that both dopants generate similar localized mid-gap states. Despite these strong similarities, we conclude that these materials possess significantly different electronic structures. Specifically, whereas photogenerated holes in Cu+:CdSe NCs localize primarily in Cu(3d) orbitals, formally oxidizing Cu+ to Cu2+, in Ag+:CdSe NCs they localize primarily in 4p orbitals of the four neighboring Se2- ligands, and Ag+ is not oxidized. This difference reflects a shift from "normal" to "inverted" bonding going from Cu+ to Ag+. The spectroscopic similarities are explained by the fact that, in both materials, photogenerated holes are localized primarily within covalent [MSe4] dopant clusters (M = Ag+, Cu+). These findings reconcile the similar spectroscopies of Ag+- and Cu+-doped semiconductor NCs with the vastly different ionization potentials of their Ag+ and Cu+ dopants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...