Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39110164

RESUMO

Persistent pulmonary hypertension of the newborn (PPHN) is a hypoxic disorder of pulmonary vascular relaxation, mediated in part by adenylyl cyclase (AC). Neonatal pulmonary arteries (PA) express mainly AC6 isoform, followed by AC3, 7 and 9. AC6 expression is upregulated in hypoxia. We reported AC enzyme inhibition due to S-nitrosylation in PPHN PA, and in PA myocytes exposed to hypoxia. We hypothesize that hypoxia promotes cysteine thiol nitrosylation of AC6, impairing cAMP production. HEK293T cells stably expressing AC isoforms (AC3, 5, 6, 7, 9), or cysteine-to-alanine mutants AC6_C1004A, AC6_C1145A or AC6_C447A were cultured in normoxia (21% O2) or hypoxia (10% O2) for 72 hours, or challenged with nitroso donor S-nitrosocysteine (CysNO). AC activity was determined by real-time live-cell cAMP measurement (cADDis assay) or terbium-norfloxacin AC catalytic assay, with or without challenge by allosteric agonist forskolin; protein S-nitrosylation detected by biotin switch method and quantified by affinity precipitation. Only AC6 catalytic activity is inhibited in hypoxia or by S-nitrosylating agent, in presence or absence of forskolin; impaired cAMP production in hypoxia correlates with increased cysteine nitrosylation of AC6. Selective AC6 inhibition in pulmonary artery myocytes extinguishes AC sensitivity to inhibition by hypoxia. Alanine substitution of C1004, but not of other cysteines, decreases S-nitrosylation of AC6. AC activity is diminished in AC6_C1004A compared to AC6 wild type. Substitution of C1004 also extinguishes the inhibition of AC6 by hypoxia. We conclude AC6 is uniquely S-nitrosylated in hypoxia, inhibiting its activity and cAMP generation. We speculate that S-nitrosylation at C1004 may inhibit AC6 interaction with Gαs, playing a role in PPHN pathophysiology.

2.
Children (Basel) ; 11(5)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38790606

RESUMO

In neonates with acute lung injury (ALI), targeting lower oxygenation saturations is suggested to limit oxygen toxicity while maintaining vital organ function. Although thresholds for cerebral autoregulation are studied for the management of premature infants, the impact of hypoxia on hemodynamics, tissue oxygen consumption and extraction is not well understood in term infants with ALI. We examined hemodynamics, cerebral autoregulation and fractional oxygen extraction, as measured by near-infrared spectroscopy (NIRS) and blood gases, in a neonatal porcine oleic acid injury model of moderate ALI. We hypothesized that in ALI animals, cerebral oxygen extraction would be increased to a greater degree than kidney or gut oxygen extraction as indicative of the brain's adaptive efforts to increase cerebral oxygen extraction at the expense of splanchnic end organs. Fifteen anesthetized, ventilated 5-day-old neonatal piglets were divided into moderate lung injury by treatment with oleic acid or control (sham injection). The degree of lung injury was quantified at baseline and after establishment of ALI by blood gases, ventilation parameters and calculated oxygenation deficit, hemodynamic indices by echocardiography and lung injury score by ultrasound. PaCO2 was maintained constant during ventilation. Cerebral, renal and gut oxygenation was determined by NIRS during stepwise decreases in inspired oxygen from 50% to 21%, correlated with PaO2 and PvO2; changes in fractional oxygen extraction (ΔFOE) were calculated from NIRS and from regional blood gas samples. The proportion of cerebral autoregulation impairment attributable to blood pressure, and to hypoxemia, was calculated from autoregulation nomograms. ALI manifested as hypoxemia with increasing intrapulmonary shunt fraction, decreased lung compliance and increased resistance, and marked increase in lung ultrasound score. Brain, gut and renal NIRS, obtained from probes placed over the anterior skull, central abdomen and flank, respectively, correlated with concurrent SVC (brain) or IVC (gut, renal) PvO2 and SvO2. Cerebral autoregulation was impaired after ALI as a function of blood pressure at all FiO2 steps, but predominantly by hypoxemia at FiO2 < 40%. Cerebral ΔFOE was higher in ALI animals at all FiO2 steps. We conclude that in an animal model of neonatal ALI, cerebrovascular blood flow regulation is primarily dependent on oxygenation. There is not a defined oxygenation threshold below which cerebral autoregulation is impaired in ALI. Cerebral oxygen extraction is enhanced in ALI, reflecting compensation for exhausted cerebral autoregulation due to the degree of hypoxemia and/or hypotension, thereby protecting against tissue hypoxia.

3.
Am J Perinatol ; 41(S 01): e3401-e3412, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38211608

RESUMO

OBJECTIVE: To evaluate the sensitivity and specificity of clinical, laboratory, and radiological markers and the neonatologist-performed intestinal ultrasound (NP-IUS) for treatment interventions in preterm neonates who developed necrotizing enterocolitis (NEC). STUDY DESIGN: This was a case-control study of preterm neonates < 35 weeks with a diagnostic workup for NEC. The diagnostic workup included NP-IUS performed by trained neonatologists using a standard protocol, abdominal roentgenogram (AXR), and laboratory investigations. Intestinal ultrasound (IUS) performed by two neonatologists was standardized to detect 11 injury markers. AXRs were read independently by experienced pediatric radiologists. The investigators who retrospectively interpreted the IUS were blinded to the clinical and treatment outcomes. RESULTS: A total of 111 neonates were assessed. Fifty-four did not require intervention and formed the control group. Twenty cases were treated medically, 21 cases were treated with late surgery for stricture or adhesions, and 16 were treated with early surgery. The integrated model of cumulative severity of ultrasound markers, respiratory and hemodynamic instability, abdominal wall cellulitis, and C- reactive protein > 16 mg/L had an area under the curve (AUC) of 0.89 (95% confidence interval [CI]: 0.83-0.94%, p < 0.0001) for diagnosing NEC requiring surgical intervention. We also investigated the utility of Bell's classification to diagnose either the need for surgery or death, and it had an AUC of 0.74 (95% CI: 0.65-0.83%, p < 0.0001). CONCLUSION: In this cohort, a combination of specific IUS markers and clinical signs of instability, abdominal wall cellulitis, plus laboratory markers were diagnostic of NEC requiring interventions. KEY POINTS: · The diagnosis of necrotizing enterocolitis requires a combination of markers.. · The combination of specific ultrasound markers, clinical signs, and laboratory markers were diagnostic of NEC requiring intervention.. · The intestinal ultrasound performed by a trained neonatologist was the most sensitive diagnostic marker of NEC requiring surgical intervention..


Assuntos
Enterocolite Necrosante , Recém-Nascido Prematuro , Ultrassonografia , Humanos , Enterocolite Necrosante/diagnóstico por imagem , Enterocolite Necrosante/classificação , Recém-Nascido , Estudos de Casos e Controles , Masculino , Feminino , Estudos Retrospectivos , Sensibilidade e Especificidade , Biomarcadores/sangue , Proteína C-Reativa/análise , Curva ROC , Radiografia Abdominal , Intestinos/diagnóstico por imagem , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA