Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36012760

RESUMO

Bone cells, in particular osteoblasts, are capable of communication with each other during bone growth and homeostasis. More recently it has become clear that they also communicate with other cell-types; including chondrocytes in articular cartilage. One way that this process is facilitated is by interstitial fluid movement within the pericellular and extracellular matrices. This stimulus is also an important mechanical signal in skeletal tissues, and is known to generate shear stresses at the micron-scale (known as fluid flow shear stresses (FFSS)). The primary aim of this study was to develop and characterize an in vitro bone-cartilage crosstalk system, to examine the effect of FFSS on these cell types. Specifically, we evaluated the response of osteoblasts and chondrocytes to FFSS and the effect of FFSS-induced soluble factors from the former, on the latter. This system will ultimately be used to help us understand the role of subchondral bone damage in articular cartilage degeneration. We also carried out a comparison of responses between cell lines and primary murine cells in this work. Our findings demonstrate that primary cells produce a more reliable and reproducible response to FFSS. Furthermore we found that at lower magnitudes , direct FFSS produces anabolic responses in both chondrocytes and osteoblasts, whereas higher levels produce more catabolic responses. Finally we show that exposure to osteoblast-derived factors in conditioned media experiments produced similarly catabolic changes in primary chondrocytes.


Assuntos
Cartilagem Articular , Condrócitos , Animais , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Camundongos , Osteoblastos/metabolismo , Transdução de Sinais/fisiologia , Estresse Mecânico
2.
Matrix Biol ; 106: 34-57, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35032612

RESUMO

Nerve guidance conduits (NGCs) are sub-optimal for long-distance injuries with inflammation and poor vascularization related to poor axonal repair. This study used a multi-factorial approach to create an optimized biomaterial NGC to address each of these issues. Through stepwise optimization, a collagen-chondroitin-6-sulfate (Coll-CS) biomaterial was functionalized with extracellular matrix (ECM) components; fibronectin, laminin 1 and laminin 2 (FibL1L2) in specific ratios. A snap-cooled freeze-drying process was then developed with optimal pore architecture and alignment to guide axonal bridging. Culture of adult rat dorsal root ganglia on NGCs demonstrated significant improvements in inflammation, neurogenesis and angiogenesis in the specific Fib:L1:L2 ratio of 1:4:1. In clinically relevant, large 15 mm rat sciatic nerve defects, FibL1L2-NGCs demonstrated significant improvements in axonal density and angiogenesis compared to unmodified NGCs with functional equivalence to autografts. Therefore, a multiparameter ECM-driven strategy can significantly improve axonal repair across large defects, without exogenous cells or growth factors.


Assuntos
Regeneração Nervosa , Nervo Isquiático , Animais , Materiais Biocompatíveis , Gânglios Espinais , Inflamação/genética , Ratos
3.
Comput Struct Biotechnol J ; 18: 93-99, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31934310

RESUMO

The impacts of environmental chemicals on the decline of kidney function have been suggested by a limited number of statistical and animal studies. Thus, those exposures may be modifiable risk factors for chronic kidney disease. Some of the chemicals, such as Perfluoroalkyl acid (PFA), are pervasive throughout our environment, determining their health effects is an important public health concern. In this study, we examined cross-sectional data from the 2009-2010 cycle of the National Health and Nutrition Examination Survey (NHANES) using a statistical causal inference method-generalized propensity score method, to determine the links between concentrations of several major environmental chemicals and kidney function measured by the estimated glomerular filtration rate (eGFR). Various generalized propensity score estimation methods including Hirano-Imbens, additive spline, and a generalized additive model were compared. Among the examined environmental chemicals, each of the statistical models used associated an increase in PFA concentration with a decline in eGFR. We conclude that PFA is a modifiable risk factor for chronic kidney disease and the statistical causal method produces credible results in estimating the effect of chemical exposures on a continuous measure of kidney functions with an observational dataset.

4.
Curr Osteoporos Rep ; 16(6): 746-753, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30406580

RESUMO

PURPOSE OF REVIEW: Mechanical loading is an essential stimulus for skeletal tissues. Osteocytes are primarily responsible for sensing mechanical stimuli in bone and for orchestrating subsequent responses. This is critical for maintaining homeostasis, and responding to injury/disease. The osteocyte mechanotransduction pathway, and the downstream effects it mediates, is highly complex. In vivo models have proved invaluable in understanding this process. This review summarizes the commonly used models, as well as more recently developed ones, and describes how they are used to address emerging questions in the field. RECENT FINDINGS: Minimally invasive animal models can be used to determine mechanisms of osteocyte mechanotransduction, at the cell and molecular level, while simultaneously reducing potentially confounding responses such as inflammation/wound-healing. The details of osteocyte mechanotransduction in bone are gradually becoming clearer. In vivo model systems are a key tool in pursing this question. Advances in this field are explored and discussed in this review.


Assuntos
Osso e Ossos/metabolismo , Mecanotransdução Celular/fisiologia , Osteócitos/metabolismo , Estresse Mecânico , Suporte de Carga/fisiologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...