Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692735

RESUMO

SARM1 is an inducible NADase that localizes to mitochondria throughout neurons and senses metabolic changes that occur after injury. Minimal proteomic changes are observed upon either SARM1 depletion or activation, suggesting that SARM1 does not exert broad effects on neuronal protein homeostasis. However, whether SARM1 activation occurs throughout the neuron in response to injury and cell stress remains largely unknown. Using a semi-automated imaging pipeline and a custom-built deep learning scoring algorithm, we studied degeneration in both mixed sex mouse primary cortical neurons and male human iPSC derived cortical neurons in response to a number of different stressors. We show that SARM1 activation is differentially restricted to specific neuronal compartments depending on the stressor. Cortical neurons undergo SARM1-dependent axon degeneration after mechanical transection and SARM1 activation is limited to the axonal compartment distal of the injury site. However, global SARM1 activation following vacor treatment causes both cell body and axon degeneration. Context-specific stressors, such as microtubule dysfunction and mitochondrial stress, induce axonal SARM1 activation leading to SARM1-dependent axon degeneration and SARM1-independent cell body death. Our data reveal that compartment-specific SARM1-mediated death signaling is dependent on the type of injury and cellular stressor.Significance Statement SARM1 is an important regulator of active axon degeneration after injury in the peripheral nervous system. Here we show that SARM1 can also be activated by a number of different cellular stressors in cortical neurons of the central nervous system. Loss or activation of SARM1 does not cause large scale changes in global protein homeostasis. However, context-dependent SARM1 activation is localized to specific neuronal compartments and results in localized degeneration of axons. Understanding which cell stress pathways are responsible for driving degeneration of distinct neuronal compartments under what cellular stress conditions and in which neuronal subtypes, will inform development of neurodegenerative disease therapeutics.

2.
Mol Ther Nucleic Acids ; 32: 773-793, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37346977

RESUMO

Antisense oligonucleotide (ASO) therapeutics are being investigated for a broad range of neurological diseases. While ASOs have been effective in the clinic, improving productive ASO internalization into target cells remains a key area of focus in the field. Here, we investigated how the delivery of ASO-loaded lipid nanoparticles (LNPs) affects ASO activity, subcellular trafficking, and distribution in the brain. We show that ASO-LNPs increase ASO activity up to 100-fold in cultured primary brain cells as compared to non-encapsulated ASO. However, in contrast to the widespread ASO uptake and activity observed following free ASO delivery in vivo, LNP-delivered ASOs did not downregulate mRNA levels throughout the brain after intracerebroventricular injection. This lack of activity was likely due to ASO accumulation in cells lining the ventricles and blood vessels. Furthermore, we reveal a formulation-dependent activation of the immune system post dosing, suggesting that LNP encapsulation cannot mask cellular ASO backbone-mediated toxicities. Together, these data provide insights into how LNP encapsulation affects ASO distribution as well as activity in the brain, and a foundation that enables future optimization of brain-targeting ASO-LNPs.

3.
Nanoscale Adv ; 4(9): 2107-2123, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-36133441

RESUMO

Lipid nanoparticles (LNPs) are gaining traction in the field of nucleic acid delivery following the success of two mRNA vaccines against COVID-19. As one of the constituent lipids on LNP surfaces, PEGylated lipids (PEG-lipids) play an important role in defining LNP physicochemical properties and biological interactions. Previous studies indicate that LNP performance is modulated by tuning PEG-lipid parameters including PEG size and architecture, carbon tail type and length, as well as the PEG-lipid molar ratio in LNPs. Owing to these numerous degrees of freedom, a high-throughput approach is necessary to fully understand LNP behavioral trends over a broad range of PEG-lipid variables. To this end, we report a low-volume, automated, high-throughput screening (HTS) workflow for the preparation, characterization, and in vitro assessment of LNPs loaded with a therapeutic antisense oligonucleotide (ASO). A library of 54 ASO-LNP formulations with distinct PEG-lipid compositions was prepared using a liquid handling robot and assessed for their physiochemical properties as well as gene silencing efficacy in murine cortical neurons. Our results show that the molar ratio of anionic PEG-lipid in LNPs regulates particle size and PEG-lipid carbon tail length controls ASO-LNP gene silencing activity. ASO-LNPs formulated using PEG-lipids with optimal carbon tail lengths achieved up to 5-fold lower mRNA expression in neurons as compared to naked ASO. Representative ASO-LNP formulations were further characterized using dose-response curves and small-angle X-ray scattering to understand structure-activity relationships. Identified hits were also tested for efficacy in primary murine microglia and were scaled-up using a microfluidic formulation technique, demonstrating a smooth translation of ASO-LNP properties and in vitro efficacy. The reported HTS workflow can be used to screen additional multivariate parameters of LNPs with significant time and material savings, therefore guiding the selection and scale-up of optimal formulations for nucleic acid delivery to a variety of cellular targets.

4.
Neuron ; 103(5): 785-801.e8, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31303374

RESUMO

We performed RNA sequencing on 40,000 cells to create a high-resolution single-cell gene expression atlas of developing human cortex, providing the first single-cell characterization of previously uncharacterized cell types, including human subplate neurons, comparisons with bulk tissue, and systematic analyses of technical factors. These data permit deconvolution of regulatory networks connecting regulatory elements and transcriptional drivers to single-cell gene expression programs, significantly extending our understanding of human neurogenesis, cortical evolution, and the cellular basis of neuropsychiatric disease. We tie cell-cycle progression with early cell fate decisions during neurogenesis, demonstrating that differentiation occurs on a transcriptomic continuum; rather than only expressing a few transcription factors that drive cell fates, differentiating cells express broad, mixed cell-type transcriptomes before telophase. By mapping neuropsychiatric disease genes to cell types, we implicate dysregulation of specific cell types in ASD, ID, and epilepsy. We developed CoDEx, an online portal to facilitate data access and browsing.


Assuntos
Bases de Dados Genéticas , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes/genética , Neocórtex/embriologia , Neurogênese/genética , Neurônios/metabolismo , Transtorno do Espectro Autista/genética , Ciclo Celular , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Células Ependimogliais/metabolismo , Epilepsia/embriologia , Epilepsia/genética , Feminino , Perfilação da Expressão Gênica , Idade Gestacional , Humanos , Deficiência Intelectual/embriologia , Deficiência Intelectual/genética , Interneurônios/metabolismo , Neocórtex/citologia , Neocórtex/metabolismo , Células-Tronco Neurais/metabolismo , Gravidez , Segundo Trimestre da Gravidez , RNA-Seq , Análise de Célula Única , Telófase/genética
5.
Nat Med ; 25(1): 152-164, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30510257

RESUMO

Identifying the mechanisms through which genetic risk causes dementia is an imperative for new therapeutic development. Here, we apply a multistage, systems biology approach to elucidate the disease mechanisms in frontotemporal dementia. We identify two gene coexpression modules that are preserved in mice harboring mutations in MAPT, GRN and other dementia mutations on diverse genetic backgrounds. We bridge the species divide via integration with proteomic and transcriptomic data from the human brain to identify evolutionarily conserved, disease-relevant networks. We find that overexpression of miR-203, a hub of a putative regulatory microRNA (miRNA) module, recapitulates mRNA coexpression patterns associated with disease state and induces neuronal cell death, establishing this miRNA as a regulator of neurodegeneration. Using a database of drug-mediated gene expression changes, we identify small molecules that can normalize the disease-associated modules and validate this experimentally. Our results highlight the utility of an integrative, cross-species network approach to drug discovery.


Assuntos
Demência/genética , Evolução Molecular , Redes Reguladoras de Genes , Doenças Neurodegenerativas/genética , Animais , Morte Celular/genética , Modelos Animais de Doenças , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Regulação da Expressão Gênica , Predisposição Genética para Doença , Vetores Genéticos/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Transcriptoma/genética , Proteínas tau/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-27940516

RESUMO

Neurodegenerative dementias are clinically heterogeneous, progressive diseases with frequently overlapping symptoms, such as cognitive impairments and behavior and movement deficits. Although a majority of cases appear to be sporadic, there is a large genetic component that has yet to be fully explained. Here, we review the recent genetic and genomic findings pertaining to Alzheimer's disease, frontotemporal dementia, Lewy body dementia, and prion dementia. In this review, we describe causal and susceptibility genes identified for these dementias and discuss recent research pertaining to the molecular function of these genes. Of particular interest, there is a large overlap in clinical phenotypes, genes, and/or aggregating protein products involved in these diseases, as well as frequent comorbid presentation, indicating that these dementias may represent a continuum of syndromes rather than individual diseases.


Assuntos
Demência/genética , Doenças Neurodegenerativas/genética , Predisposição Genética para Doença , Humanos
7.
Gen Comp Endocrinol ; 212: 106-13, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24662391

RESUMO

Neuropeptides modulate many aspects of behavior and physiology in a broad range of animals. Arginine vasotocin (AVT) is implicated in mediating social behavior in teleost fish, although its specific role varies between species, sexes, life stages, and social context. To investigate whether the effects of AVT on behavior depend on social context, we used the African cichlid fish Astatotilapia burtoni, which is well-known for its remarkable behavioral plasticity. We pharmacologically manipulated the AVT system in established socially dominant and subordinate A. burtoni males, as well as in males ascending to dominance status in a socially unstable environment. Our results show that exogenous AVT causes a stress response, as evidenced by reduced behavioral activity and increased circulating levels of cortisol in established dominant and subordinate males. Administration of the AVT antagonist Manning compound, on the other hand, did not affect established subordinate or dominant males. However, AVT antagonist-treated males ascending from subordinate to dominant status exhibited reduced aggressive and increased courtship behavior compared to vehicle-treated animals. Finally, we measured circulating cortisol levels and brain gene expression levels of AVT and its behaviorally relevant V1a2 receptor in all three social phenotypes and found that plasma cortisol and mRNA levels of both genes were increased in ascending males compared to dominant and subordinate males. Our results provide a more detailed understanding of the role of the AVT system in the regulation of complex behavior in a dynamically changing social environment.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Ciclídeos/fisiologia , Dominação-Subordinação , Hidrocortisona/sangue , Vasoconstritores/farmacologia , Vasotocina/farmacologia , Animais , Masculino , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estresse Psicológico/etiologia , Estresse Psicológico/metabolismo
8.
J Neurosci ; 33(39): 15382-7, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-24068805

RESUMO

The larval zebrafish is a model organism to study the neural circuitry underlying behavior. There exist, however, few examples of robust long-term memory. Here we describe a simple, unrestrained associative place-conditioning paradigm. We show that visual access to a group of conspecifics has rewarding properties for 6- to 8-day-old larval zebrafish. We use this social reward as an unconditioned stimulus and pair it with a distinct visual environment. After training, larvae exhibited spatial preference for the location previously paired with the social reward for up to 36 h, indicating that zebrafish larvae can exhibit long-term associative memory. Furthermore, incubation with a protein synthesis inhibitor or an NMDAR-antagonist impaired memory. In future experiments, this learning paradigm could be used to study the social interactions of larval zebrafish or paired with cell-specific metabolic labeling to visualize circuits underlying memory formation.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Memória de Longo Prazo/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Animais , Condicionamento Clássico/efeitos dos fármacos , Larva , Biossíntese de Proteínas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Recompensa , Peixe-Zebra
9.
Curr Protoc Cell Biol ; Chapter 7: 7.11.1-7.11.29, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22968844

RESUMO

Fluorescent labeling of proteins by genetically encoded fluorescent protein tags has enabled an enhanced understanding of cell biological processes but is restricted to the analysis of a limited number of identified proteins. This approach does not permit, e.g., the unbiased visualization of a full proteome in situ. We describe here a fluorescence-based method to follow proteome-wide patterns of newly synthesized proteins in cultured cells, tissue slices, and a whole organism. This technique is compatible with immunohistochemistry and in situ hybridization. Key to this method is the introduction of a small bio-orthogonal reactive group by metabolic labeling. This is accomplished by replacing the amino acid methionine by the azide-bearing methionine surrogate azidohomoalanine (AHA) in a step very similar to classical radioisotope labeling. Subsequently, an alkyne-bearing fluorophore is covalently attached to the group by "click chemistry"--a copper(I)-catalyzed [3+2]azide-alkyne cycloaddition. By similar means, metabolic labeling can also be performed with the alkyne-bearing homopropargylglycine (HPG) and clicked to an azide-functionalized fluorophore.


Assuntos
Azidas/química , Técnicas de Cultura de Células/métodos , Corantes Fluorescentes/química , Imuno-Histoquímica/métodos , Hibridização in Situ Fluorescente/métodos , Metionina/metabolismo , Proteínas/química , Animais , Azidas/metabolismo , Corantes Fluorescentes/metabolismo , Humanos , Metionina/química , Proteínas/metabolismo
10.
ACS Chem Neurosci ; 3(1): 40-49, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22347535

RESUMO

Protein expression in the nervous system undergoes regulated changes in response to changes in behavioral states, in particular long-term memory formation. Recently, methods have been developed (BONCAT and FUNCAT), which introduce non-canonical amino acids bearing small bio-orthogonal functional groups into proteins using the cells' own translational machinery. Using the selective 'click reaction', this allows for the identification and visualization of newly synthesized proteins in vitro. Here we demonstrate that non-canonical amino acid labeling can be achieved in vivo in an intact organism capable of simple learning behavior, the larval zebrafish. We show that azidohomoalanine is metabolically incorporated into newly synthesized proteins, in a time- and concentration-dependent manner, but has no apparent toxic effect and does not influence simple behaviors such as spontaneous swimming and escape responses. This enables fluorescent labeling of newly synthesized proteins in whole mount larval zebrafish. Furthermore, stimulation with a GABA antagonist that elicits seizures in the larval zebrafish causes an increase in protein synthesis throughout the proteome, which can also be visualized in intact larvae.

11.
Mol Genet Genomics ; 285(2): 125-49, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21136082

RESUMO

Inositol auxotrophy (Ino(-) phenotype) in budding yeast has classically been associated with misregulation of INO1 and other genes involved in lipid metabolism. To identify all non-essential yeast genes that are necessary for growth in the absence of inositol, we carried out a genome-wide phenotypic screening for deletion mutants exhibiting Ino(-) phenotypes under one or more growth conditions. We report the identification of 419 genes, including 385 genes not previously reported, which exhibit this phenotype when deleted. The identified genes are involved in a wide range of cellular processes, but are particularly enriched in those affecting transcription, protein modification, membrane trafficking, diverse stress responses, and lipid metabolism. Among the Ino(-) mutants involved in stress response, many exhibited phenotypes that are strengthened at elevated temperature and/or when choline is present in the medium. The role of inositol in regulation of lipid metabolism and stress response signaling is discussed.


Assuntos
Inositol/metabolismo , Metabolismo dos Lipídeos , Saccharomyces cerevisiae/genética , Transdução de Sinais , Estresse Fisiológico , Estudo de Associação Genômica Ampla , Mutação , Fenótipo , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...