Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol ; 99(3): 957-966, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36054748

RESUMO

In order, understanding the antimicrobial action of photodynamic therapy and how this technique can contribute to its application in the control of pathogens. The objective of the study was to employ a proteomic approach to investigate the protein profile of Staphylococcus aureus after antimicrobial photodynamic therapy mediated by rose bengal (RB-aPDT). S. aureus was treated with RB (10 nmoL L-1 ) and illuminated with green LED (0.17 J cm-2 ) for cell viability evaluation. Afterward, proteomic analysis was employed for protein identification and bioinformatic tools to classify the differentially expressed proteins. The reduction in S. aureus after photoinactivation was ~2.5 log CFU mL-1 . A total of 12 proteins (four up-regulated and eight down-regulated) correspond exclusively to alteration by RB-aPDT. Functionally, these proteins are distributed in protein binding, structural constituent of ribosome, proton transmembrane transporter activity and ATPase activity. The effects of photodamage include alterations of levels of several proteins resulting in an activated stress response, altered membrane potential and effects on energy metabolism. These 12 proteins required the presence of both light and RB suggesting a unique response to photodynamic effects. The information about this technique contributes valuable insights into bacterial mechanisms and the mode of action of photodynamic therapy.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Staphylococcus aureus , Rosa Bengala/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Proteômica , Fotoquimioterapia/métodos , Anti-Infecciosos/farmacologia
2.
Photodiagnosis Photodyn Ther ; 40: 103103, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36057363

RESUMO

Multifunctional P123 micelle linked covalently with spermine (SM) and folic acid (FA) was developed as a drug delivery system of hypericin (HYP). The chemical structures of the modified copolymers were confirmed by spectroscopy and spectrophotometric techniques (UV-vis, FTIR, and 1H NMR). The copolymeric micelles loading HYP were prepared by solid dispersion and characterized by UV-vis, fluorescence, dynamic light scattering (DLS), ζ potential, and transmission electron microscopy (TEM). The results provided a good level of stability for HYP-loaded P123-SM, P123-FA, and P123-SM/P123-FA in the aqueous medium. The morphology analysis showed that all copolymeric micelles are spherical. Well-defined regions of different contrast allow us to infer that SM and FA were localized on the surface of micelles, and the HYP molecules are located in the core region of micelles. The uptake potential of multifunctional P123 micelle was accessed by exposing the micellar systems loading HYP to two cell lines, B16-F10 and HaCaT. HYP-loaded P123 micelles reveal a low selectivity for melanoma cells, showing significant photodamage for HaCat cells. However, the exposition of B16-F10 cells to Hyp-loaded SM- and FA-functionalized P123 micelles under light irradiation revealed the lowest CC50 values. The interpretation of these results suggested that the combination of SM and FA on P123 micelles is the main factor in enhancing the HYP uptake by melanoma cells, consequently leading to its photoinactivation.


Assuntos
Melanoma , Fotoquimioterapia , Humanos , Micelas , Fotoquimioterapia/métodos , Ácido Fólico/química , Poloxaleno/química , Espermina , Polímeros/química , Melanoma/tratamento farmacológico , Portadores de Fármacos/química
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 275: 121178, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35366523

RESUMO

Pluronic/lipid mix promises stealth liposomes with long circulation time and long-term stability for pharmaceutical applications. However, the influence of Pluronics on several aspects of lipid membranes has not been fully elucidated. Herein it was described the effect of Pluronics on the structured water, alkyl chain conformation, and kinetic stability of dimyristoylphosphatidylcholine (DMPC) liposomes using interfacial and deeper fluorescent probes along with computational molecular modeling data. Interfacial water changed as a function of Pluronics' hydrophobicity with polypropylene oxide (PPO) anchoring the copolymers in the lipid bilayer. Pluronics with more than 30-40 PO units had facilitated penetration at the bilayer while shorter PPO favored a more interfacial interaction. Low Pluronic concentrations provided long-term stability of vesicles by steric effects of polyethylene oxide (PEO), but high amounts destabilized the vesicles as a sum of water-bridge cleavage at the polar head group and the reduced alkyl-alkyl interactions among the lipids. The high kinetic stability of Pluronic/DMPC vesicles is a proof-of-concept of its advantages and applicability in nanotechnology over conventional liposome-based pharmaceutical products for future biomedical applications.


Assuntos
Dimiristoilfosfatidilcolina , Poloxâmero , Bicamadas Lipídicas , Lipossomos , Polietilenoglicóis , Água
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 268: 120664, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-34876344

RESUMO

The charge-transfer complexes (CTC) between electron donor iodide and pyridinium dimers and monomers as acceptors have been studied spectrophotometrically in acetonitrile, DMSO and water. The dimers were: N,N'-alkyldiyl-bis(4-cyanopyridinium) and N,N'-alkyldiyl-bis(2-bromopyridinium), and the monomers were: N-alkyl-4-cyanopyridinium and N-alkyl-2-bromopyridinium, bridged by n methylene spacers. The formation constant (KCTC), molar absorptivity (εCTC), fluorescence-quenching constant (KSV) were determined. The results indicate that the stoichiometry of the CTC for dimers and monomers is 1:1 (equimolar ratio), and its formation is favored for dimers more than for monomers, especially dimers with short methylene spacers forming a "sandwiched type-complex" in which the iodide is close to the two pyridinium rings. Solvents with low polarity favored the complex, which was destroyed by the presence of water. The experimental studies were complemented with theoretical studies with quantum mechanics (QM) calculations using density functional theory (DFT) and molecular mechanics (MM) simulations with Molecular Dynamics for identify the most stable conformers in acetonitrile solution. The electronic excitations were calculated with sequential QM/MM hybrid method, showing a charge-transfer wavelength in agreement with the UV-Vis absorption spectra obtained experimentally. It confirms the "sandwiched type-complex" conformers favoring the interaction of the iodide with one pyridinium rings and simultaneously forming one, or two, hydrogen bonds with the alkyl chain and additionally, for the case of dimers, with the other pyridinium ring.


Assuntos
Iodetos , Ligação de Hidrogênio , Íons , Solventes , Espectrofotometria
5.
Nat Prod Res ; 36(7): 1904-1908, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32911984

RESUMO

Hypericin (HYP) is an active compound of Hypericum perforatum. Associated with photodynamic therapy (PDT), HYP has shown a broad therapeutic potential against microorganisms and cancer cells. Due to the low water solubility of HYP, its application in the biological medium becomes limited. To solve this limitation, our research group has been used copolymeric micelles to carrier HYP with high efficiency. However, there is no elucidated mechanism for HYP delivery mediated by copolymeric micelles. In this sense, we believed that the study of binding-sites of copolymeric micelles and HYP is the first step to its understanding. For this purpose, in this work, we employed 1D and 2D NMR techniques to investigate the behaviour of HYP-loaded P84 micelles in different concentrations . 1D and 2D NMR analysis revealed that HYP molecules were arrangement in a π-stacked aggregation form with a specific location on the core of P84 micelles.


Assuntos
Perileno , Fotoquimioterapia , Antracenos , Micelas , Perileno/análogos & derivados , Fotoquimioterapia/métodos
6.
ChemistryOpen ; 10(12): 1251-1259, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34907672

RESUMO

The synthesis and characterization of amino-functionalized mesoporous silica nanoparticles are presented following two different synthetic methods: co-condensation and post-synthesis grafting of 3-aminopropyltriethoxysilane. The amino groups' distribution on the mesoporous silica nanoparticles was evaluated considering the aggregation state of a grafted photosensitizer (Verteporfin) by using spectroscopic techniques. The homogeneous distribution of amino groups within the silica network is a key factor to avoid aggregation during further organic functionalization and to optimize the performance of functionalized silica nanoparticles in biomedical applications. In addition, the formation of a protein corona on the external surface of both bare and amino-functionalized mesoporous silica was also investigated by adsorbing Bovine Serum Albumin (BSA) as a model protein. The adsorption of BSA was found to be favorable, reducing the aggregation phenomena for both bare and amino-modified nanoparticles. Nevertheless, the dispersant effect of BSA was much more evident in the case of amino-modified nanoparticles, which reached monodispersion after adsorption of the protein, thus suggesting that amino-modified nanoparticles can benefit from protein corona formation for preventing severe aggregation in biological media.


Assuntos
Nanopartículas , Dióxido de Silício , Adsorção , Soroalbumina Bovina
7.
Photodiagnosis Photodyn Ther ; 35: 102414, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34186264

RESUMO

BackgroundFusarium has been considered an opportunistic pathogen, causing several infections in humans, including onychomycosis. In addition, a high resistance to conventional antifungals has been linked to this genus. Photodynamic Therapy (PDT), known as a non-invasive therapy, can be an alternative treatment for fungal infections, based on the excitation of a photosensitizing compound (PS) by a specific length of light, causing damage to the target. The aim of this study was to evaluate the effects of a formulation of Hypericin (Hyp) encapsulated in Pluronic™ (P123), via photodynamic therapy (PDT), on planktonic cells and biofilms in Fusarium spp. using in vitro and ex vivo assays. Materials & Methods epidemiology studies about Fusarium spp. in onychomycosis was perfomed, carried out molecular identification, compared the antifungal activity of the conventional antifungals with PDT with encapsulated Hypericin (Hyp-P123), carried out detection of reactive oxygen species, and measured the antibiofilm effect of the Hyp-P123-PDT in vitro and in an ex vivo model of onychomycosis. Results Hyp-P123-PDT exhibited a fungicidal effect in vitro with reductions ≥ 3 log10. ROS generation increased post-Hyp-P123-PDT in Fusarium spp. Hyp-P123-PDT showed a potent inhibitory effect on adhesion-phase and mature biofilms in vitro tests and an ex vivo model of onychomycosis (p<0.0001). Conclusion Hyp-P123-PDT had a potent effect against Fusarium spp., suggesting that photodynamic therapy with Hyp-P123 is a safe and promising treatment for onychomycosis in clinical practice.


Assuntos
Fusarium , Onicomicose , Perileno , Fotoquimioterapia , Antracenos , Humanos , Onicomicose/tratamento farmacológico , Perileno/análogos & derivados , Perileno/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia
8.
Chem Biol Interact ; 344: 109526, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34023281

RESUMO

The interaction of the steviol and its glycosides (SG), steviolbioside, and rebaudioside A, with bovine serum albumin (BSA) was studied by absorption and fluorescence spectroscopy techniques alongside molecular docking. The stevia derivatives quenched the fluorescence of BSA by a dynamic quenching mechanism, indicating the interaction between the stevia derivatives and BSA. The binding constant (Kb) of steviol was 100-1000-fold higher than those of SG. The stevia derivative/BSA binding reaction was spontaneous and involved the formation of hydrogen bonds and van der Waals interactions between steviol and steviolbioside with BSA, and water reorganization around the rebaudioside A/BSA complex. Molecular docking pointed out the FA1 and FA9 binding sites of BSA as the probable binding sites of steviol and SG, respectively. In conclusion, steviol enhanced hydrophobicity and small size compared to SG may favor its binding to BSA. As steviol and its glycosides share binding sites on BSA with free fatty acids and drugs, they may be competitively displaced from plasma albumin under various physiological states or disease conditions. These findings are clinically relevant and provide an insight into the pharmacokinetics and pharmacodynamics of the stevia glycosides.


Assuntos
Diterpenos do Tipo Caurano/metabolismo , Soroalbumina Bovina/metabolismo , Animais , Sítios de Ligação , Bovinos , Simulação de Acoplamento Molecular , Ligação Proteica , Soroalbumina Bovina/química , Termodinâmica
9.
Langmuir ; 37(10): 3202-3213, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33682407

RESUMO

Phthalocyanine aluminum chloride (Pc) is a clinically viable photosensitizer (PS) to treat skin lesions worsened by microbial infections. However, this molecule presents a high self-aggregation tendency in the biological fluid, which is an in vivo direct administration obstacle. This study proposed the use of bioadhesive and thermoresponsive hydrogels comprising triblock-type Pluronic F127 and Carbopol 934P (FCarb) as drug delivery platforms of Pc (FCarbPc)-targeting topical administration. Carbopol 934P was used to increase the F127 hydrogel adhesion on the skin. Rheological analyses showed that the Pc presented a low effect on the hydrogel matrix, changing the gelation temperature from 27.2 ± 0.1 to 28.5 ± 0.9 °C once the Pc concentration increases from zero to 1 mmol L-1. The dermatological platform showed matrix erosion effects with the release of loaded Pc micelles. The permeation studies showed the excellent potential of the FCarb platform, which allowed the partition of the PS into deeper layers of the skin. The applicability of this dermatological platform in photodynamic therapy was evaluated by the generation of reactive species which was demonstrated by chemical photodynamic efficiency assays. The low effect on cell viability and proliferation in the dark was demonstrated by in vitro assays using L929 fibroblasts. The FCarbPc fostered the inhibition of Staphylococcus aureus strain, therefore demonstrating the platform's potential in the treatment of dermatological infections of microbial nature.


Assuntos
Fotoquimioterapia , Administração Tópica , Cloreto de Alumínio , Liberação Controlada de Fármacos , Hidrogéis , Indóis , Compostos Organometálicos , Poloxâmero
10.
Nat Prod Res ; 35(22): 4225-4234, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31773984

RESUMO

Acrocomia totai Mart (Arecaceae) is a palm tree native to South America, widely studied for biodiesel production. The aim of this work was to perform the first phytochemical study of A. totai leaves, as well as to do biological assays against human cancer cell lines. A new triterpene of the hopane class named totaiol (1), three known triterpenes (2-4), and two phytosteroids (5-6) were identified. The new natural product was characterized using 1 D and 2 D NMR, single crystal X-ray diffraction analises, and high resolution mass spectrometry. The intercontacts in the crystal packing were also analised. Complete stereochemical characterization of compound 1 revealed an unusual positioning pattern for methyl and isopropenyl groups in the polycyclic skeleton. Compounds 1-5 were evaluated for the first time in antiproliferative assays against Ca Ski, MCF-7 and MCF-10 cells. The new natural product was active against Ca Ski cells with IC50 ≤ 6.25 µg mL-1.


Assuntos
Arecaceae , Triterpenos , Humanos , Compostos Fitoquímicos , Folhas de Planta , Árvores , Triterpenos/farmacologia
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 248: 119173, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33316657

RESUMO

Hypericin (Hy) compound presents a high photoactivity in photodynamic therapy (PDT), photodiagnosis and theranostics applications. The maintenance of this compound in monomeric form could undermine the potential benefits of its photophysical and photodynamic activity. In this study, we demonstrated that the Hy formulated in a system based on the use of the F127 copolymer and the 1,2-dipalmitoyl-sn-3-glycerol-phosphatidylcholine (DPPC) as micelles, liposomal vesicles and Copolymer-Lipid coated systems, have improved its photophysical properties for many clinical modalities. Based on the results of the triplet state lifetime values (τt), the singlet oxygen quantum yield (ΦΔ1O2), the fluorescence lifetime (τF) and the fluorescence quantum yield (ΦF), all Hy formulations had its photophysical properties described in different models of drug delivery systems (DDS). In addition, the transient spectra profile of those formulations was unaffected by the Hy incorporation process, except for the liposomal system, which demonstrated to be the less stable one by flash photolysis technique. The cytotoxic effects of those formulations were also investigated for CaCo-2 and HaCat cells line. The cytotoxic concentrations for 50% (CC50) were 0.56, 1.05, 1.33 and 4.80 µmol L-1 for Copolymer-Lipid/Hy, DPPC/Hy, F127/Hy and ethanol/Hy for CaCo-2 cells, respectively, and 0.69, 2.02, 1.45 and 1.16 µmol L-1 for Copolymer-Lipid/Hy, DPPC/Hy, F127/Hy and ethanol/Hy for HaCat cells, respectively. The F127 copolymer had a significant role in many photophysical parameters determined for Copolymer-Lipid/Hy coated system. Although all those formulations had shown satisfactory results, Copolymer-Lipid/Hy proved to be superior in many aspects, being the most promising formulation for PDT, photodiagnosis and theranostics applications.


Assuntos
Nanoestruturas , Fotoquimioterapia , Antracenos , Células CACO-2 , Humanos , Lipossomos , Micelas , Perileno/análogos & derivados , Fármacos Fotossensibilizantes/uso terapêutico , Polietilenos , Polipropilenos
12.
J Photochem Photobiol B ; 212: 112039, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33002779

RESUMO

In this study we report a novel theranostic lipid-polymer liposome, obtained from DPPC and the triblock copolymer F127 covalently modified with 5(6)-carboxyfluorescein (CF) for photodynamic applications. Due to the presence of F127, small unilamellar vesicle (SUV) liposomes were synthesized by a simple and fast thin-film hydration method without the need for an extrusion process. The vesicles have around 100 nm, low polydispersity and superb solution stability. The clinically used photosensitizer verteporfin (VP) was entrapped into the vesicles, mostly in monomeric form, with 90% loading efficiency. Stern-Volmer and fluorescence lifetime assays showed heterogeneous distribution of the VP and CF into the vesicles, ensuring the integrity of their individual photophysical properties. The theranostic properties were entirely photoactivatable and can be trigged by a unique wavelength (470 nm). The feasibility of the system was tested against the Glioblastoma multiforme cell line T98G. Cellular uptake by time-resolved fluorescence microscopy showed monomerized VP (monoexponential decay, 6.0 ns) at nucleus level, while CF was detected at the membrane by fluorescence microscopy. The strategy's success was supported by the reduction of 98% in the viability of T98G cells by the photoactivated lipid-polymer liposome with [VP] = 1.0 µmol L-1. Therefore, the novel theranostic liposome is a potential system for use in cancer and ocular disease therapies.


Assuntos
Fotoquimioterapia/métodos , Verteporfina/administração & dosagem , Verteporfina/farmacologia , Linhagem Celular Tumoral , Estabilidade de Medicamentos , Humanos , Cinética , Lipossomos , Verteporfina/uso terapêutico
13.
Life Sci ; 255: 117858, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32497635

RESUMO

At present, cervical cancer is the fourth leading cause of cancer among women worldwide with no effective treatment options. In this study we aimed to evaluate the efficacy of hypericin (HYP) encapsulated on Pluronic® P123 (HYP/P123) photodynamic therapy (PDT) in a comprehensive panel of human cervical cancer-derived cell lines, including HeLa (HPV 18-positive), SiHa (HPV 16-positive), CaSki (HPV 16 and 18-positive), and C33A (HPV-negative), compared to a nontumorigenic human epithelial cell line (HaCaT). Were investigated: (i) cell cytotoxicity and phototoxicity, cellular uptake and subcellular distribution; (ii) cell death pathway and cellular oxidative stress; (iii) migration and invasion. Our results showed that HYP/P123 micelles had effective and selective time- and dose-dependent phototoxic effects on cervical cancer cells but not in HaCaT. Moreover, HYP/P123 micelles accumulated in endoplasmic reticulum, mitochondria and lysosomes, resulting in photodynamic cell death mainly by necrosis. HYP/P123 induced cellular oxidative stress mainly via type II mechanism of PDT and inhibited cancer cell migration and invasion mainly via MMP-2 inhibition. Taken together, our results indicate a potentially useful role of HYP/P123 micelles as a platform for HYP delivery to more specifically and effectively treat cervical cancers through PDT, suggesting they are worthy for in vivo preclinical evaluations.


Assuntos
Antineoplásicos/administração & dosagem , Nanopartículas , Perileno/análogos & derivados , Fotoquimioterapia/métodos , Neoplasias do Colo do Útero/tratamento farmacológico , Antracenos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Feminino , Células HeLa , Humanos , Micelas , Invasividade Neoplásica , Estresse Oxidativo/efeitos dos fármacos , Perileno/administração & dosagem , Perileno/farmacologia , Poloxaleno/química , Fatores de Tempo , Neoplasias do Colo do Útero/patologia
14.
Photochem Photobiol Sci ; 19(5): 620-630, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32248218

RESUMO

Hypericin (Hyp) is considered a promising photosensitizer for Photodynamic Therapy (PDT), due to its high hydrophobicity, affinity for cell membranes, low toxicity and high photooxidation activity. In this study, Hyp photophysical properties and photodynamic activity against melanoma B16-F10 cells were optimized using DPPC liposomes (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) as a drug delivery system. This nanoparticle is used as a cell membrane biomimetic model and solubilizes hydrophobic drugs. Hyp oxygen singlet lifetime (τ) in DPPC was approximately two-fold larger than that in P-123 micelles (Pluronic™ surfactants), reflecting a more hydrophobic environment provided by the DPPC liposome. On the other hand, singlet oxygen quantum yield values (ΦΔ1O2) in DPPC and P-123 were similar; Hyp molecules were preserved as monomers. The Hyp/DPPC liposome aqueous dispersion was stable during fluorescence emission and the liposome diameter remained stable for at least five days at 30 °C. However, the liposomes collapsed after the lyophilization/rehydration process, which was resolved by adding the lyoprotectant Trehalose to the liposome dispersion before lyophilization. Cell viability of the Hyp/DPPC formulation was assessed against healthy HaCat cells and high-metastatic melanoma B16-F10 cells. Hyp incorporated into the DPPC carrier presented a higher selectivity index than the Hyp sample previously solubilized in ethanol under the illumination effect. Moreover, the IC50 was lower for Hyp in DPPC than for Hyp pre-solubilized in ethanol. These results indicate the potential of the formulation of Hyp/DPPC for future biomedical applications in PDT treatment.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/análogos & derivados , Antineoplásicos/farmacologia , Melanoma/tratamento farmacológico , Perileno/análogos & derivados , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , 1,2-Dipalmitoilfosfatidilcolina/química , Antracenos , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Composição de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Estabilidade de Medicamentos , Humanos , Hypericum/química , Lipossomos/química , Melanoma/patologia , Estrutura Molecular , Perileno/síntese química , Perileno/química , Perileno/farmacologia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Células Tumorais Cultivadas
15.
J Photochem Photobiol B ; 203: 111763, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31931382

RESUMO

Photodynamic therapy (PDT) is a clinical modality that allows the destruction of tumor cells and microorganisms by reactive oxygen species, formed by the combination of photosensitizer (PS), molecular oxygen and adequate wavelength light. This research, through a clean methodology that involves pressurized liquids extraction (PLE), obtained a highly antimicrobial extract of Tetragonia tetragonoides, which rich in chlorophylls as photosensitizers. The Chlorophylls-based extract (Cbe-PLE) presented pharmacological safety, through the maintenance of cellular viability. In addition, Cbe-PLE showed great efficacy against Staphylococcus aureus, with severe dose-dependent damage to the cell wall of the pathogen. The obtained product has a high potential for the development of photostimulated phytotherapic formulations for clinical applications in localized infections, as a complementary therapeutic alternative to antibiotics.


Assuntos
Aizoaceae/química , Extratos Vegetais/química , Aizoaceae/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Clorofila/química , Clorofila/farmacologia , Luz , Camundongos , Testes de Sensibilidade Microbiana , Nanoestruturas/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Folhas de Planta/química , Folhas de Planta/metabolismo , Caules de Planta/química , Caules de Planta/metabolismo , Staphylococcus aureus/efeitos dos fármacos
16.
Anticancer Agents Med Chem ; 20(11): 1352-1367, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30387402

RESUMO

BACKGROUND: Breast cancer is the most relevant type of cancer and the second cause of cancer- related deaths among women in general. Currently, there is no effective treatment for breast cancer although advances in its initial diagnosis and treatment are available. Therefore, the value of novel anti-tumor therapeutic modalities remains an immediate unmet need in clinical practice. Following our previous work regarding the properties of the Pluronics with different photosensitizers (PS) for photodynamic therapy (PDT), in this study we aimed to evaluate the efficacy of supersaturated hypericin (HYP) encapsulated on Pluronic® P123 (HYP/P123) against breast cancer cells (MCF-7) and non-tumorigenic breast cells (MCF-10A). METHODS: Cell internalization and subcellular distribution of HYP/P123 was confirmed by fluorescence microscopy. The phototoxicity and citototoxicity of HYP/P123 was assessed by trypan blue exclusion assay in the presence and absence of light. Long-term cytotoxicity was performed by clonogenic assay. Cell migration was determined by the wound-healing assay. Apoptosis and necrosis assays were performed by annexin VFITC/ propidium Iodide (PI) by fluorescence microscopy. RESULTS: Our results showed that HYP/P123 micelles had high stability and high rates of binding to cells, which resulted in the selective internalization in MCF-7, indicating their potential to permeate the membrane of these cells. Moreover, HYP/P123 micelles accumulated in mitochondria and endoplasmic reticulum organelles, resulting in the photodynamic cell death by necrosis. Additionally, HYP/P123 micelles showed effective and selective time- and dose dependent phototoxic effects on MCF-7 cells but little damage to MCF-10A cells. HYP/P123 micelles inhibited the generation of cellular colonies, indicating a possible capability to prevent the recurrence of breast cancer. We also demonstrated that HYP/P123 micelles inhibit the migration of tumor cells, possibly by decreasing their ability to form metastases. CONCLUSION: Taken together, the results presented here indicate a potentially useful role of HYP/P123 micelles as a platform for HYP delivery to more specifically and effectively treat human breast cancers through photodynamic therapy, suggesting they are worthy for in vivo preclinical evaluations.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Perileno/análogos & derivados , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Poloxaleno/farmacologia , Antracenos , Antineoplásicos/química , Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Micelas , Estrutura Molecular , Perileno/química , Perileno/farmacologia , Fármacos Fotossensibilizantes/química , Poloxaleno/química , Relação Estrutura-Atividade
17.
Antibiotics (Basel) ; 8(4)2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694195

RESUMO

Antimicrobial photodynamic therapy (aPDT) has been shown as a promising technique to inactivate foodborne bacteria, without inducing the development of bacterial resistance. Knowing that addition of inorganic salts, such as potassium iodide (KI), can modulate the photodynamic action of the photosensitizer (PS), we report in this study the antimicrobial effect of eosin (EOS) and rose bengal (RB) combined with KI against Salmonella enterica serovar Typhimurium and Staphylococcus aureus. Additionally, the possible development of bacterial resistance after this combined aPDT protocol was evaluated. The combination of EOS or RB, at all tested concentrations, with KI at 100 mM, was able to efficiently inactivate S. Typhimurium and S. aureus. This combined approach allows a reduction in the PS concentration up to 1000 times, even against one of the most common foodborne pathogenics, S. Typhimurium, a gram-negative bacterium which is not so prone to inactivation with xanthene dyes when used alone. The photoinactivation of S. Typhimurium and S. aureus by both xanthenes with KI did not induce the development of resistance. The low price of the xanthene dyes, the non-toxic nature of KI, and the possibility of reducing the PS concentration show that this technology has potential to be easily transposed to the food industry.

18.
Mater Sci Eng C Mater Biol Appl ; 104: 109923, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31499973

RESUMO

The high incidence of cancer, necessity of treatment, and prognosis times are urgent issues that need to be addressed. In this work, we present DPPC liposomes coated with F127 triblock copolymers as a promising alternative in drug delivery systems for cancer therapy. The proposed mixed liposomes exhibit adequate size, high stability, and passive targeting that result from the EPR effect. An interesting strategy to obtain both passive and active targeting is the vectorization with a covalent bond between F127 and Biotin (a vitamin). Cancer cells can overexpress Biotin receptors, such as Avidin. Here, we evaluate the cytotoxic effects of the erythrosine-decyl ester (ERYDEC). This is a photosensitizer that can be utilized in photodynamic therapy (PDT) and incorporated in DPPC liposomes coated with F127 (F127/DPPC) and the biotinylated-F127 (F127-B/DPPC). The results showed that DPPC liposomes were efficiently mixed with common F127 or F127B, exhibiting adequate physical properties with simple and low-cost preparation. An HABA/Avidin assay showed the amount of Biotin available at the liposome surface. In addition, ERYDEC interaction with lipid vesicles showed high encapsulating efficiency and slow release kinetics. The ERYDEC monomeric species are represented by high light absorption and high singlet oxygen generation (1O2), which confirm the presence of the drug in its monomeric state, as required for PDT. The ERYDEC/liposome system showed high stability and absence of significant cytotoxic effects (absence of light) in fibroblasts of the Mus musculus cell line. In addition, phototoxicity studies showed that ERYDEC/liposomes were able to inhibit cancer cells. However, in the biotinylated system, the effect was much greater than the common F127 coating. This dramatically decreased the inhibitory concentration of CC50 and CC90. In addition, cellular uptake studies based on fluorescence properties of ERYDEC showed that a two-hour incubation period was enough for the uptake by the cell. Therefore, the new vectorized-coated liposome is a potential system for use in cancer treatments, considering that it is a theranostic platform.


Assuntos
Biotina/química , Liberação Controlada de Fármacos , Fármacos Fotossensibilizantes/farmacologia , Animais , Biotinilação , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Eritrosina/farmacologia , Humanos , Hidrodinâmica , Lipossomos , Tamanho da Partícula , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Poloxâmero/química , Espectrofotometria Ultravioleta
19.
Colloids Surf B Biointerfaces ; 181: 837-844, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31252220

RESUMO

Liposomes are membrane models and excellent Drug Delivery Systems. However, their preparation is expensive, labor intensive, time consuming, and sometimes toxic. Recently, we published an innovative methodology for the production of homogeneous Small Unilamellar Vesicles (SUV) through a simple, fast, relatively low cost, and reproducible process that resulted in very stable vesicles. The methodology involves a small amount of F127 triblock Pluronic® copolymer (0.02% m/V) to a phospholipid (DPPC, DOPC, and DSPC), followed by the solid dispersion methodology. After that, during the thin-film hydration process (of lipids and F127), SUVs are quickly formed after 30 s of sonication using bath equipment at a low frequency of 42 kHz. The resultant colloidal solution was homogeneous with liposomes lower than ˜100 nm of hydrodynamic diameter. The SUV formation is highly temperature dependent. However, it functions independently from the lipid´s phase (gel or liquid-crystal phases). A preparation with Pluronic P123 did not lead to homogeneous SUV. We found that the conditions for SUV formation feature a mixture of F127 and lipids at above a critical temperature. This temperature is not the copolymer´s CMT (micelle is not required). Interestingly, the long PEO groups of F127 play an essential role in this SUV formation, which is proposed to be governed by the "Budding Off" model. The findings show a complex combination of factors: a sum of the sonoporation, the oscillation effects of the compressed/dilated regions, the frequency of oscillation, and the temperature-dependence on long PEO groups. Also, the outer lipid monolayer interaction might by responsible for generating "daughter" vesicles from "mother" vesicles in the mechanism.


Assuntos
Sonicação , Tamanho da Partícula , Poloxaleno/química , Poloxâmero/química , Propriedades de Superfície , Temperatura , Lipossomas Unilamelares/síntese química , Lipossomas Unilamelares/química
20.
Appl Spectrosc ; 73(8): 936-944, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31149836

RESUMO

Hypericin (Hyp) is a natural compound with interesting photophysical and pharmacological properties, which has been used in photodynamic therapy and photodynamic inactivation of microorganisms. Its synthesis is based on a series of chemical processes that ends with a light-drug interaction by the photoconversion of protohypericin (pHyp) to Hyp. Although this photosensitizer is used in a variety of medical applications, the photophysical and photochemical mechanisms involved in the final step related to the photo production of Hyp are not completely understood at the molecular level. Protohypericin concentration, solvents, light irradiation under different wavelengths, and a sort of variables could play an important role in predicting the yielding of this photoconversion process. Here, we used the high-sensitive and remote measurement characteristics of the time-resolved thermal lens technique to investigate the relation between the light-induced photoconversion rate of pHyp to Hyp and the initial concentration pHyp. The results show a linear dependence of the photoreaction rate with the concentration of pHyp, indicating that the overall reaction process includes steps comprising the formation of distinct intermediate species. We demonstrate the applicability of the thermal lens technique for the photochemical characterization of photosensitive drugs at low concentration levels.


Assuntos
Perileno/análogos & derivados , Fármacos Fotossensibilizantes/síntese química , Antracenos , Lentes , Perileno/síntese química , Perileno/química , Fotoquimioterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA