Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Carbohydr Polym ; 341: 122327, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876725

RESUMO

Bacterial pathogens can cause a broad range of infections with detrimental effects on health. Vaccine development is essential as multi-drug resistance in bacterial infections is a rising concern. Recombinantly produced proteins carrying O-antigen glycosylation are promising glycoconjugate vaccine candidates to prevent bacterial infections. However, methods for their comprehensive structural characterization are lacking. Here, we present a bottom-up approach for their site-specific characterization, detecting N-glycopeptides by nano reversed-phase liquid chromatography-mass spectrometry (RP-LC-MS). Glycopeptide analyses revealed information on partial site-occupancy and site-specific glycosylation heterogeneity and helped corroborate the polysaccharide structures and their modifications. Bottom-up analysis was complemented by intact glycoprotein analysis using nano RP-LC-MS allowing the fast visualization of the polysaccharide distribution in the intact glycoconjugate. At the glycopeptide level, the model glycoconjugates analyzed showed different repeat unit (RU) distributions that spanned from 1 to 21 RUs attached to each of the different glycosylation sites. Interestingly, the intact glycoprotein analysis displayed a RU distribution ranging from 1 to 28 RUs, showing the predominant species when the different glycopeptide distributions are combined in the intact glycoconjugate. The complete workflow based on LC-MS measurements allows detailed and comprehensive analysis of the glycosylation state of glycoconjugate vaccines.


Assuntos
Vacinas Bacterianas , Glicoconjugados , Glicopeptídeos , Glicoconjugados/química , Glicoconjugados/imunologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/química , Glicosilação , Glicopeptídeos/química , Glicopeptídeos/análise , Espectrometria de Massas/métodos , Vacinas Conjugadas/química , Vacinas Conjugadas/imunologia , Cromatografia Líquida/métodos , Cromatografia de Fase Reversa/métodos
2.
Immunology ; 171(3): 428-439, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38097893

RESUMO

The type and strength of effector functions mediated by immunoglobulin G (IgG) antibodies rely on the subclass and the composition of the N297 glycan. Glycosylation analysis of both bulk and antigen-specific human IgG has revealed a marked diversity of the glycosylation signatures, including highly dynamic patterns as well as long-term stability of profiles, yet information on how individual B cell clones would contribute to this diversity has hitherto been lacking. Here, we assessed whether clonally related B cells share N297 glycosylation patterns of their secreted IgG. We differentiated single antigen-specific peripheral IgG+ memory B cells into antibody-secreting cells and analysed Fc glycosylation of secreted IgG. Furthermore, we sequenced the variable region of their heavy chain, which allowed the grouping of the clones into clonotypes. We found highly diverse glycosylation patterns of culture-derived IgG, which, to some degree, mimicked the glycosylation of plasma IgG. Each B cell clone secreted IgG with a mixture of different Fc glycosylation patterns. The majority of clones produced fully fucosylated IgG. B cells producing afucosylated IgG were scattered across different clonotypes. In contrast, the remaining glycosylation traits were, in general, more uniform. These results indicate IgG-Fc fucosylation to be regulated at the single-clone level, whereas the regulation of other glycosylation traits most likely occurs at a clonotypic or systemic level. The discrepancies between plasma IgG and culture-derived IgG, could be caused by the origin of the B cells analysed, clonal dominance or factors from the culture system, which need to be addressed in future studies.


Assuntos
Fragmentos Fc das Imunoglobulinas , Imunoglobulina G , Humanos , Glicosilação , Fragmentos Fc das Imunoglobulinas/genética , Linfócitos B/metabolismo , Células Clonais/metabolismo
3.
Glycobiology ; 33(12): 1155-1171, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37847613

RESUMO

Aberrant glycosylation is a hallmark of cancer and is not just a consequence, but also a driver of a malignant phenotype. In prostate cancer, changes in fucosylated and sialylated glycans are common and this has important implications for tumor progression, metastasis, and immune evasion. Glycans hold huge translational potential and new therapies targeting tumor-associated glycans are currently being tested in clinical trials for several tumor types. Inhibitors targeting fucosylation and sialylation have been developed and show promise for cancer treatment, but translational development is hampered by safety issues related to systemic adverse effects. Recently, potent metabolic inhibitors of sialylation and fucosylation were designed that reach higher effective concentrations within the cell, thereby rendering them useful tools to study sialylation and fucosylation as potential candidates for therapeutic testing. Here, we investigated the effects of global metabolic inhibitors of fucosylation and sialylation in the context of prostate cancer progression. We find that these inhibitors effectively shut down the synthesis of sialylated and fucosylated glycans to remodel the prostate cancer glycome with only minor apparent side effects on other glycan types. Our results demonstrate that treatment with inhibitors targeting fucosylation or sialylation decreases prostate cancer cell growth and downregulates the expression of genes and proteins important in the trajectory of disease progression. We anticipate our findings will lead to the broader use of metabolic inhibitors to explore the role of fucosylated and sialylated glycans in prostate tumor pathology and may pave the way for the development of new therapies for prostate cancer.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Glicosilação , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Processamento de Proteína Pós-Traducional , Polissacarídeos/metabolismo
4.
J Proteome Res ; 22(10): 3213-3224, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37641533

RESUMO

Inflammatory bowel diseases (IBD), such as Crohn's disease (CD) and ulcerative colitis (UC), are chronic and relapsing inflammations of the digestive tract with increasing prevalence, yet they have unknown origins or cure. CD and UC have similar symptoms but respond differently to surgery and medication. Current diagnostic tools often involve invasive procedures, while laboratory markers for patient stratification are lacking. Large glycomic studies of immunoglobulin G and total plasma glycosylation have shown biomarker potential in IBD and could help determine disease mechanisms and therapeutic treatment choice. Hitherto, the glycosylation signatures of plasma immunoglobulin A, an important immunoglobulin secreted into the intestinal mucin, have remained undetermined in the context of IBD. Our study investigated the associations of immunoglobulin A1 and A2 glycosylation with IBD in 442 IBD cases (188 CD and 254 UC) and 120 healthy controls by reversed-phase liquid chromatography electrospray-ionization mass spectrometry of tryptic glycopeptides. Differences of IgA O- and N-glycosylation (including galactosylation, bisection, sialylation, and antennarity) between patient groups were associated with the diseases, and these findings led to the construction of a statistical model to predict the disease group of the patients without the need of invasive procedures. This study expands the current knowledge about CD and UC and could help in the development of noninvasive biomarkers and better patient care.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Doença de Crohn/diagnóstico , Doença de Crohn/epidemiologia , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/epidemiologia , Glicosilação , Imunoglobulina A , Biomarcadores
5.
Cells ; 12(6)2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36980204

RESUMO

Reception of Wnt signals by cells is predominantly mediated by Frizzled receptors in conjunction with a co-receptor, the latter being LRP6 or LRP5 for the Wnt/ß-catenin signalling pathway. It is important that cells maintain precise control of receptor activation events in order to properly regulate Wnt/ß-catenin signalling as aberrant signalling can result in disease in humans. Phosphorylation of the intracellular domain (ICD) of LRP6 is well known to regulate Wntß-catenin signalling; however, less is known for regulatory post-translational modification events within the extracellular domain (ECD). Using a cell culture-based expression screen for functional regulators of LRP6, we identified a glycosyltransferase, B3GnT2-like, from a teleost fish (medaka) cDNA library, that modifies LRP6 and regulates Wnt/ß-catenin signalling. We provide both gain-of-function and loss-of-function evidence that the single human homolog, B3GnT2, promotes extension of polylactosamine chains at multiple N-glycans on LRP6, thereby enhancing trafficking of LRP6 to the plasma membrane and promoting Wnt/ß-catenin signalling. Our findings further highlight the importance of LRP6 as a regulatory hub in Wnt signalling and provide one of the few examples of how a specific glycosyltransferase appears to selectively target a signalling pathway component to alter cellular signalling events.


Assuntos
Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , beta Catenina , Animais , Humanos , beta Catenina/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Glicosilação , Via de Sinalização Wnt , Glicosiltransferases/metabolismo , N-Acetilglucosaminiltransferases/metabolismo
6.
J Am Soc Nephrol ; 32(10): 2455-2465, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34127537

RESUMO

BACKGROUND: IgA nephropathy (IgAN) is the most common primary glomerular disease worldwide and is a leading cause of renal failure. The disease mechanisms are not completely understood, but a higher abundance of galactose-deficient IgA is recognized to play a crucial role in IgAN pathogenesis. Although both types of human IgA (IgA1 and IgA2) have several N-glycans as post-translational modification, only IgA1 features extensive hinge-region O-glycosylation. IgA1 galactose deficiency on the O-glycans is commonly detected by a lectin-based method. To date, limited detail is known about IgA O- and N-glycosylation in IgAN. METHODS: To gain insights into the complex O- and N-glycosylation of serum IgA1 and IgA2 in IgAN, we used liquid chromatography-mass spectrometry (LC-MS) for the analysis of tryptic glycopeptides of serum IgA from 83 patients with IgAN and 244 age- and sex-matched healthy controls. RESULTS: Multiple structural features of N-glycosylation of IgA1 and IgA2 were associated with IgAN and glomerular function in our cross-sectional study. These features included differences in galactosylation, sialylation, bisection, fucosylation, and N-glycan complexity. Moreover, IgA1 O-glycan sialylation was associated with both the disease and glomerular function. Finally, glycopeptides were a better predictor of IgAN and glomerular function than galactose-deficient IgA1 levels measured by lectin-based ELISA. CONCLUSIONS: Our high-resolution data suggest that IgA O- and N-glycopeptides are promising targets for future investigations on the pathophysiology of IgAN and as potential noninvasive biomarkers for disease prediction and deteriorating kidney function.


Assuntos
Galactose/metabolismo , Glomerulonefrite por IGA/sangue , Imunoglobulina A/metabolismo , Adulto , Estudos de Casos e Controles , Cromatografia Líquida , Estudos Transversais , Feminino , Galactose/química , Taxa de Filtração Glomerular , Glomerulonefrite por IGA/fisiopatologia , Glicopeptídeos/análise , Glicosilação , Humanos , Imunoglobulina A/química , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Ácido N-Acetilneuramínico/metabolismo , Polissacarídeos/química
7.
Int J Mol Sci ; 21(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076454

RESUMO

Protein N-glycosylation is a multifactorial process involved in many biological processes. A broad range of congenital disorders of glycosylation (CDGs) have been described that feature defects in protein N-glycan biosynthesis. Here, we present insights into the disrupted N-glycosylation of various CDG patients exhibiting defects in the transport of nucleotide sugars, Golgi glycosylation or Golgi trafficking. We studied enzymatically released N-glycans of total plasma proteins and affinity purified immunoglobulin G (IgG) from patients and healthy controls using mass spectrometry (MS). The applied method allowed the differentiation of sialic acid linkage isomers via their derivatization. Furthermore, protein-specific glycan profiles were quantified for transferrin and IgG Fc using electrospray ionization MS of intact proteins and glycopeptides, respectively. Next to the previously described glycomic effects, we report unprecedented sialic linkage-specific effects. Defects in proteins involved in Golgi trafficking (COG5-CDG) and CMP-sialic acid transport (SLC35A1-CDG) resulted in lower levels of sialylated structures on plasma proteins as compared to healthy controls. Findings for these specific CDGs include a more pronounced effect for α2,3-sialylation than for α2,6-sialylation. The diverse abnormalities in glycomic features described in this study reflect the broad range of biological mechanisms that influence protein glycosylation.


Assuntos
Defeitos Congênitos da Glicosilação/sangue , Glicopeptídeos/sangue , Adolescente , Adulto , Proteínas Sanguíneas/metabolismo , Criança , Pré-Escolar , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Feminino , Glicômica/métodos , Glicopeptídeos/metabolismo , Glicosilação , Humanos , Lactente , Masculino , Espectrometria de Massas/métodos , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteômica/métodos , Ácidos Siálicos/metabolismo
8.
EMBO J ; 39(15): e103457, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32567721

RESUMO

Seizure protein 6 (SEZ6) is required for the development and maintenance of the nervous system, is a major substrate of the protease BACE1 and is linked to Alzheimer's disease (AD) and psychiatric disorders, but its molecular functions are not well understood. Here, we demonstrate that SEZ6 controls glycosylation and cell surface localization of kainate receptors composed of GluK2/3 subunits. Loss of SEZ6 reduced surface levels of GluK2/3 in primary neurons and reduced kainate-evoked currents in CA1 pyramidal neurons in acute hippocampal slices. Mechanistically, loss of SEZ6 in vitro and in vivo prevented modification of GluK2/3 with the human natural killer-1 (HNK-1) glycan, a modulator of GluK2/3 function. SEZ6 interacted with GluK2 through its ectodomain and promoted post-endoplasmic reticulum transport of GluK2 in the secretory pathway in heterologous cells and primary neurons. Taken together, SEZ6 acts as a new trafficking factor for GluK2/3. This novel function may help to better understand the role of SEZ6 in neurologic and psychiatric diseases.


Assuntos
Região CA1 Hipocampal/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células Piramidais/metabolismo , Receptores de Ácido Caínico/metabolismo , Animais , Glicosilação , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Transporte Proteico , Receptores de Ácido Caínico/genética , Receptor de GluK2 Cainato , Receptor de GluK3 Cainato
9.
Clin Transl Immunology ; 9(2): e1112, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32099650

RESUMO

OBJECTIVES: Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infections in infants, and there is no vaccine available. In early life, the most important contributors to protection against infectious diseases are the innate immune response and maternal antibodies. However, antibody-mediated protection against RSV disease is incompletely understood, as both antibody levels and neutralisation capacity correlate poorly with protection. Since antibodies also mediate natural killer (NK) cell activation, we investigated whether this functionality correlates with RSV disease. METHODS: We performed an observational case-control study including infants hospitalised for RSV infection, hernia surgery or RSV-negative respiratory viral infections. We determined RSV antigen-specific antibody levels in plasma using a multiplex immunoassay. Subsequently, we measured the capacity of these antibodies to activate NK cells. Finally, we assessed Fc-glycosylation of the RSV-specific antibodies by mass spectrometry. RESULTS: We found that RSV-specific maternal antibodies activate NK cells in vitro. While concentrations of RSV-specific antibodies did not differ between cases and controls, antibodies from infants hospitalised for severe respiratory infections (RSV and/or other) induced significantly less NK cell interferon-γ production than those from uninfected controls. Furthermore, NK cell activation correlated with Fc-fucosylation of RSV-specific antibodies, but their glycosylation status did not significantly differ between cases and controls. CONCLUSION: Our results suggest that Fc-dependent antibody function and quality, exemplified by NK cell activation and glycosylation, contribute to protection against severe RSV disease and warrant further studies to evaluate the potential of using these properties to evaluate and improve the efficacy of novel vaccines.

10.
Anal Chem ; 92(6): 4518-4526, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32091889

RESUMO

Immunoglobulin (Ig) glycosylation is recognized for its influence on Ig turnover and effector functions. However, the large-scale profiling of Ig glycosylation in a biomedical setting is challenged by the existence of different Ig isotypes and subclasses, their varying serum concentrations, and the presence of multiple glycosylation sites per Ig. Here, a high-throughput nanoliquid chromatography (LC)- mass spectrometry (MS)-based method for simultaneous analysis of IgG and IgA glycopeptides was developed and applied on a serum sample set from 185 healthy donors. Sample preparation from minute amounts of serum was performed in 96-well plate format. Prior to trypsin digestion, IgG and IgA were enriched simultaneously, followed by a one-step denaturation, reduction, and alkylation. The obtained nanoLC-MS data were subjected to semiautomated, targeted feature integration and quality control. The combined and simplified protocol displayed high overall method repeatability, as assessed using pooled plasma and serum standards. Taking all samples together, 143 individual N- and O-glycopeptides were reliably quantified. These glycopeptides were attributable to 11 different peptide backbones, derived from IgG1, IgG2/3, IgG4, IgA1, IgA2, and the joining chain from dimeric IgA. Using this method, novel associations were found between IgA N- and O-glycosylation and age. Furthermore, previously reported associations of IgG Fc glycosylation with age in healthy individuals were confirmed. In conclusion, the new method paves the way for high-throughput multiprotein plasma glycoproteomics.


Assuntos
Glicopeptídeos/sangue , Ensaios de Triagem em Larga Escala , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Feminino , Voluntários Saudáveis , Humanos , Masculino
11.
Front Immunol ; 10: 1189, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244828

RESUMO

Autoantibodies to myelin oligodendrocytes glycoprotein (MOG) are found in a fraction of patients with inflammatory demyelination and are detected with MOG-transfected cells. While the prototype anti-MOG mAb 8-18C5 and polyclonal anti-MOG responses from different mouse strains largely recognize the FG loop of MOG, the human anti-MOG response is more heterogeneous and human MOG-Abs recognizing different epitopes were found to be pathogenic. The aim of this study was to get further insight into details of antigen-recognition by human MOG-Abs focusing on the impact of glycosylation. MOG has one known N-glycosylation site at N31 located in the BC loop linking two beta-sheets. We compared the reactivity to wild type MOG with that toward two different mutants in which the neutral asparagine of N31 was mutated to negatively charged aspartate or to the neutral alanine. We found that around 60% of all patients (16/27) showed an altered reactivity to one or both of the mutations. We noted seven different patterns of recognition of the two glycosylation-deficient mutants by different patients. The introduced negative charge at N31 enhanced recognition in some, but reduced recognition in other patients. In 7/27 patients the neutral glycosylation-deficient mutant was recognized stronger. The folding of the extracellular domain of MOG with the formation of beta-sheets did not depend on its glycosylation as seen by circular dichroism. We determined the glycan structure of MOG produced in HEK cells by mass spectrometry. The most abundant glycoforms of MOG expressed in HEK cells are diantennary, contain a core fucose, an antennary fucose, and are decorated with α2,6 linked Neu5Ac, while details of the glycoforms of MOG in myelin remain to be identified. Together, we (1) increase the knowledge about heterogeneity of human autoantibodies to MOG, (2) show that the BC loop affects recognition in about 60% of the patients, (3) report that all patients recognized the unglycosylated protein backbone, while (4) in about 20% of the patients the attached sugar reduces autoantibody binding presumably via steric hindrance. Thus, a neutral glycosylation-deficient mutant of MOG might enhance the sensitivity to identify MOG-Abs.


Assuntos
Especificidade de Anticorpos , Autoanticorpos/imunologia , Epitopos/imunologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Adulto , Feminino , Glicosilação , Células HeLa , Humanos , Masculino , Domínios Proteicos , Estrutura Secundária de Proteína
12.
Thromb Haemost ; 118(12): 2134-2144, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30453343

RESUMO

BACKGROUND: C1-inhibitor (C1-inh) therapeutics can reduce neutrophil activity in various inflammatory conditions. This 'novel' anti-inflammatory effect of C1-inh is attributed to the tetrasaccharide sialyl LewisX (SLeX) present on its N-glycans. Via SLeX, C1-inh is suggested to interact with selectins on inflamed endothelium and prevent neutrophil rolling. However, C1-inh products contain plasma glycoprotein α1-antichymotrypsin (ACT) as a co-purified protein impurity. OBJECTIVE: This article investigates the contribution of ACT to the effects observed with C1-inh. MATERIALS AND METHODS: We have separated C1-inh and ACT from a therapeutic C1-inh preparation and investigated the influence of these proteins on SLeX-selectin interactions in a specific in vitro model, which makes use of rolling of SLeX-coated beads on immobilized E-selectin. RESULTS: We find that ACT and not C1-inh, shows a clear sialic acid-dependent interference in SLeX-selectin interactions, at concentrations present in C1-inh therapeutics. Furthermore, we do not find any evidence of SLeX on C1-inh using either Western blotting with anti-SLeX antibodies (CSLEX1 and KM93) or by mass spectrometric analysis of N-glycans. C1-inh reacts weakly to antibody HECA-452, which detects a broad range of selectin ligands, but ACT gives a much stronger signal, suggesting the presence of a selectin ligand on ACT. CONCLUSION: The 'novel' anti-inflammatory effects of C1-inh are unlikely due to SLeX on C1-inh and can in fact be due to SLeX-like glycans on ACT, present in C1-inh products. In view of our results, it is important to assess the role of ACT in vivo and revisit past studies performed with commercial C1-inh.


Assuntos
Anti-Inflamatórios/imunologia , Proteína Inibidora do Complemento C1/uso terapêutico , Endotélio Vascular/fisiologia , Neutrófilos/imunologia , Oligossacarídeos/uso terapêutico , Anticorpos Bloqueadores/farmacologia , Ligação Competitiva , Sistema Livre de Células , Humanos , Migração e Rolagem de Leucócitos , Microesferas , Ativação de Neutrófilo , Preparações Farmacêuticas , Selectinas/metabolismo , Antígeno Sialil Lewis X , alfa 1-Antitripsina/metabolismo
13.
Biochim Biophys Acta Gen Subj ; 1862(12): 2613-2622, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30251656

RESUMO

BACKGROUND: Little is known about enzymatic N-glycosylation in type 2 diabetes, a common posttranslational modification of proteins influencing their function and integrating genetic and environmental influences. We sought to gain insights into N-glycosylation to uncover yet unexplored pathophysiological mechanisms in type 2 diabetes. METHODS: Using a high-throughput MALDI-TOF mass spectrometry method, we measured N-glycans in plasma samples of the DiaGene case-control study (1583 cases and 728 controls). Associations were investigated with logistic regression and adjusted for age, sex, body mass index, high-density lipoprotein-cholesterol, non-high-density lipoprotein-cholesterol, and smoking. Findings were replicated in a nested replication cohort of 232 cases and 108 controls. RESULTS: Eighteen glycosylation features were significantly associated with type 2 diabetes. Fucosylation and bisection of diantennary glycans were decreased in diabetes (odds ratio (OR) = 0.81, p = 1.26E-03, and OR = 0.87, p = 2.84E-02, respectively), whereas total and, specifically, alpha2,6-linked sialylation were increased (OR = 1.38, p = 9.92E-07, and OR = 1.40, p = 5.48E-07). Alpha2,3-linked sialylation of triantennary glycans was decreased (OR = 0.60, p = 6.38E-11). CONCLUSIONS: While some glycosylation changes were reflective of inflammation, such as increased alpha2,6-linked sialylation, our finding of decreased alpha2,3-linked sialylation in type 2 diabetes patients is contradictory to reports on acute and chronic inflammation. Thus, it might have previously unreported immunological implications in type 2 diabetes. GENERAL SIGNIFICANCE: This study provides new insights into N-glycosylation patterns in type 2 diabetes, which can fuel studies on causal mechanisms and consequences of this complex disease.


Assuntos
Proteínas Sanguíneas/metabolismo , Diabetes Mellitus Tipo 2/sangue , Polissacarídeos/metabolismo , Idoso , Feminino , Glicosilação , Humanos , Masculino , Pessoa de Meia-Idade , Processamento de Proteína Pós-Traducional , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
14.
Glycobiology ; 28(10): 765-773, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982679

RESUMO

Complement factor H (FH), an elongated and substantially glycosylated 20-domain protein, is a soluble regulator of the complement alternative pathway (AP). It contains several glycan binding sites which mediate recognition of α2-3-linked sialic acid (FH domain 20) and glycosaminoglycans (domains 6-8 and 19-20). FH also binds the complement C3-activation product C3b, a powerful opsonin and focal point for the formation of C3-convertases of the AP feedback loop. In freely circulating FH the C3b binding site in domains 19-20 is occluded, a phenomenon that is not fully understood and could be mediated by an intramolecular interaction between FH's intrinsic sialylated glycosylation and its own sialic acid binding site. In order to assess this possibility, we characterized FH's sialylation with respect to glycosidic linkage type and searched for further potential, not yet characterized sialic acid binding sites in FH and its seven-domain spanning splice variant and fellow complement regulator FH like-1 (FHL-1). We also probed FH binding to the sialic acid variant Neu5Gc which is not expressed in humans but on heterologous erythrocytes that restrict the human AP and in FH transgenic mice. We find that FH contains mostly α2-6-linked sialic acid, making an intramolecular interaction with its α2-3-sialic acid specific binding site and an associated self-lock mechanism unlikely, substantiate that there is only a single sialic acid binding site in FH and none in FHL-1, and demonstrate direct binding of FH to the nonhuman sialic acid Neu5Gc, supporting the use of FH transgenic mouse models for studies of complement-related diseases.


Assuntos
Ácido N-Acetilneuramínico/análise , Animais , Sítios de Ligação , Configuração de Carboidratos , Fator H do Complemento/química , Fator H do Complemento/isolamento & purificação , Fator H do Complemento/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Ácido N-Acetilneuramínico/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo
15.
Mol Genet Metab ; 123(3): 364-374, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29396028

RESUMO

Congenital disorders of glycosylation (CDG) are genetic defects in the glycoconjugate biosynthesis. >100 types of CDG are known, most of them cause multi-organ diseases. Here we describe a boy whose leading symptoms comprise cutis laxa, pancreatic insufficiency and hepatosplenomegaly. Whole exome sequencing identified the novel hemizygous mutation c.542T>G (p.L181R) in the X-linked ATP6AP1, an accessory protein of the mammalian vacuolar H+-ATPase, which led to a general N-glycosylation deficiency. Studies of serum N-glycans revealed reduction of complex sialylated and appearance of truncated diantennary structures. Proliferation of the patient's fibroblasts was significantly reduced and doubling time prolonged. Additionally, there were alterations in the fibroblasts' amino acid levels and the acylcarnitine composition. Especially, short-chain species were reduced, whereas several medium- to long-chain acylcarnitines (C14-OH to C18) were elevated. Investigation of the main lipid classes revealed that total cholesterol was significantly enriched in the patient's fibroblasts at the expense of phophatidylcholine and phosphatidylethanolamine. Within the minor lipid species, hexosylceramide was reduced, while its immediate precursor ceramide was increased. Since catalase activity and ACOX3 expression in peroxisomes were reduced, we assume an ATP6AP1-dependent impact on the ß-oxidation of fatty acids. These results help to understand the complex clinical characteristics of this new patient.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Cútis Laxa/genética , Insuficiência Pancreática Exócrina/genética , Metaboloma/genética , ATPases Vacuolares Próton-Translocadoras/genética , Acil-CoA Oxidase/metabolismo , Catalase/metabolismo , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/metabolismo , Cútis Laxa/diagnóstico , Cútis Laxa/metabolismo , Insuficiência Pancreática Exócrina/diagnóstico , Insuficiência Pancreática Exócrina/metabolismo , Ácidos Graxos/metabolismo , Genes Ligados ao Cromossomo X/genética , Humanos , Lactente , Masculino , Metabolômica , Oxirredução , ATPases Vacuolares Próton-Translocadoras/deficiência , Sequenciamento do Exoma
16.
Front Immunol ; 8: 608, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28620376

RESUMO

N-linked glycosylation of the fragment crystallizable (Fc)-region of immunoglobulin G (IgG) is known to have a large influence on the activity of the antibody, an effect reported to be IgG subclass specific. This situation applies both to humans and mice. The mouse is often used as experimental animal model to study the effects of Fc-glycosylation on IgG effector functions, and results are not uncommonly translated back to the human situation. However, while human IgG Fc-glycosylation has been extensively characterized in both health and disease, this is not the case for mice. To characterize the glycosylation profile of murine IgG-Fc and in addition evaluate the systematic glycosylation differences between mouse strains, sexes, and IgG subclasses, we used nanoliquid chromatography mass spectrometry (nanoLC-MS(/MS)) to look at the subclass-specific IgG Fc-glycopeptides of male and female mice from the strains BALB/c, C57BL/6, CD-1, and Swiss Webster. The structural analysis revealed the presence of predominantly fucosylated, diantennary glycans, with varying amounts of galactosylation and α2,6-sialylation. In addition, we report glycosylation features not previously reported in an Fc-specific way on murine IgG, including monoantennary, hybrid, and high mannose structures, as well as diantennary structures without a core fucose, with a bisecting N-acetylglucosamine, or with α1,3-galactosylation. Pronounced differences were detected between strains and the IgG subclasses within each strain. Especially the large spread in galactosylation and sialylation levels found between both strains and subclasses may vastly influence IgG effector functions. Mouse strain-based and subclass-specific glycosylation differences should be taken into account when designing and interpreting immunological and glycobiological mouse studies involving IgG effector functions.

17.
Br J Haematol ; 176(4): 651-660, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27891581

RESUMO

Haemolytic disease of the fetus and newborn (HDFN) is a severe disease in which fetal red blood cells (RBC) are destroyed by maternal anti-RBC IgG alloantibodies. HDFN is most often caused by anti-D but may also occur due to anti-K, -c- or -E. We recently found N-linked glycosylation of anti-D to be skewed towards low fucosylation, thereby increasing the affinity to IgG-Fc receptor IIIa and IIIb, which correlated with HDFN disease severity. Here, we analysed 230 pregnant women with anti-c, -E or -K alloantibodies from a prospective screening cohort and investigated the type of Fc-tail glycosylation of these antibodies in relation to the trigger of immunisation and pregnancy outcome. Anti-c, -E and -K show - independent of the event that had led to immunisation - a different kind of Fc-glycosylation compared to that of the total IgG fraction, but with less pronounced differences compared to anti-D. High Fc-galactosylation and sialylation of anti-c correlated with HDFN disease severity, while low anti-K Fc-fucosylation correlated with severe fetal anaemia. IgG-Fc glycosylation of anti-RBC antibodies is shaped depending on the antigen. These features influence their clinical potency and may therefore be used to predict severity and identify those needing treatment.


Assuntos
Eritroblastose Fetal/imunologia , Fragmentos Fc das Imunoglobulinas/metabolismo , Isoanticorpos/sangue , Adulto , Antígenos de Grupos Sanguíneos/imunologia , Eritroblastose Fetal/diagnóstico , Eritrócitos/imunologia , Feminino , Glicosilação , Humanos , Recém-Nascido , Masculino , Gravidez , Índice de Gravidade de Doença
18.
J Proteome Res ; 15(10): 3489-3499, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27546880

RESUMO

Glycosylation is an abundant and important protein modification with large influence on the properties and interactions of glycoconjugates. Human plasma N-glycosylation has been the subject of frequent investigation, revealing strong associations with physiological and pathological conditions. Less well-characterized is the plasma N-glycosylation of the mouse, the most commonly used animal model for studying human diseases, particularly with regard to differences between strains and sexes. For this reason, we used MALDI-TOF(/TOF)-MS(/MS) assisted by linkage-specific derivatization of the sialic acids to comparatively analyze the plasma N-glycosylation of both male and female mice originating from BALB/c, CD57BL/6, CD-1, and Swiss Webster strains. The combined use of this analytical method and the recently developed data processing software named MassyTools allowed the relative quantification of the N-glycan species within plasma, the distinction between α2,3- and α2,6-linked N-glycolylneuraminic acids (due to respective lactonization and ethyl esterification), the detection of sialic acid O-acetylation, as well as the characterization of branching sialylation (Neu5Gcα2,3-Hex-[Neu5Gcα2,6-]HexNAc). When analyzing the glycosylation according to mouse sex, we found that female mice present a considerably higher degree of core fucosylation (2-4-fold depending on the strain), galactosylation, α2,6-linked sialylation, and larger high-mannose type glycan species compared with their male counterparts. Male mice, on the contrary, showed on average higher α2,3-linked sialylation, branching sialylation, and putative bisection. These differences together with sialic acid acetylation proved to be strain-specific as well. Interestingly, the outbred strains CD-1 and Swiss Webster displayed considerably larger interindividual variation than inbred strains BALB/c and CD57BL/6, suggesting a strong hereditable component of the observed plasma N-glycome.


Assuntos
Glicosilação , Polissacarídeos/química , Animais , Animais Endogâmicos/metabolismo , Animais não Endogâmicos/metabolismo , Feminino , Humanos , Masculino , Camundongos , Polissacarídeos/sangue , Fatores Sexuais
19.
J Proteome Res ; 15(7): 2198-210, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27267458

RESUMO

Bottom-up glycoproteomics by liquid chromatography-mass spectrometry (LC-MS) is an established approach for assessing glycosylation in a protein- and site-specific manner. Consequently, tools are needed to automatically align, calibrate, and integrate LC-MS glycoproteomics data. We developed a modular software package designed to tackle the individual aspects of an LC-MS experiment, called LaCyTools. Targeted alignment is performed using user defined m/z and retention time (tr) combinations. Subsequently, sum spectra are created for each user defined analyte group. Quantitation is performed on the sum spectra, where each user defined analyte can have its own tr, minimum, and maximum charge states. Consequently, LaCyTools deals with multiple charge states, which gives an output per charge state if desired, and offers various analyte and spectra quality criteria. We compared throughput and performance of LaCyTools to combinations of available tools that deal with individual processing steps. LaCyTools yielded relative quantitation of equal precision (relative standard deviation <0.5%) and higher trueness due to the use of MS peak area instead of MS peak intensity. In conclusion, LaCyTools is an accurate automated data processing tool for high-throughput analysis of LC-MS glycoproteomics data. Released under the Apache 2.0 license, it is freely available on GitHub ( https://github.com/Tarskin/LaCyTools ).


Assuntos
Processamento Eletrônico de Dados/métodos , Glicopeptídeos/análise , Proteômica/métodos , Cromatografia Líquida , Espectrometria de Massas , Proteômica/normas , Software
20.
J Struct Biol ; 195(2): 199-206, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27268273

RESUMO

Autotaxin (ATX) is a secreted phosphodiesterase that produces the signalling lipid lysophosphatidic acid (LPA). The bimetallic active site of ATX is structurally related to the alkaline phosphatase superfamily. Here, we present a new crystal structure of ATX in complex with orthovanadate (ATX-VO5), which binds the Oγ nucleophile of Thr209 and adopts a trigonal bipyramidal conformation, following the nucleophile attack onto the substrate. We have now a portfolio of ATX structures we discuss as intermediates of the catalytic mechanism: the new ATX-VO5 structure; a unique structure where the nucleophile Thr209 is phosphorylated (ATX-pThr). Comparing these to a complex with the LPA product (ATX-LPA) and with a complex with a phosphate ion (ATX-PO4), that represent the Michaelis complex of the reaction, we observe movements of Thr209, changes in the relative displacement of the zinc ions, and a water molecule that likely fulfils the second nucleophilic attack. We propose that ATX follows the associative two-step in-line displacement mechanism.


Assuntos
Lisofosfolipídeos/química , Diester Fosfórico Hidrolases/química , Conformação Proteica , Vanadatos/química , Fosfatase Alcalina/química , Catálise , Domínio Catalítico , Cristalografia por Raios X , Humanos , Lipídeos/química , Fosfatos/química , Fosforilação , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...