Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(51): 18807-18814, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38095420

RESUMO

Human haptic perception relies on the ability of sensory receptors underneath the skin corneocyte layer to sense external load, where adhesion and friction play an essential role in nanoscale solid-solid contact. Energy dissipation present at the surface interface due to the change of separation distance during sliding contact was uncovered, but the energy dissipation of human finger skin cell-nanoprobe contact under humidity and temperature conditions has not been investigated yet. In this paper, the energy dissipation of skin corneocyte-nanoprobe interface under variation of both humidity, 0.05-80%RH, and temperature ranging from 25 to 40 °C is directly measured by atomic force microscopy (AFM). Analytical models of dissipation energy for this nanomaterial interface mechanism are developed, and the results are compared to the measured values. AFM measurements of dissipation energy reveal that the amount of dissipated energy caused by water meniscus stretching monotonically increases with humidity and temperature, resulting in adhesion and friction decreases. The purposed analytical model represents that dissipation energy trend.


Assuntos
Pele , Humanos , Temperatura , Umidade , Microscopia de Força Atômica/métodos , Fricção
2.
Nat Commun ; 13(1): 6916, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376323

RESUMO

A double-edged sword in two-dimensional material science and technology is optically forbidden dark exciton. On the one hand, it is fascinating for condensed matter physics, quantum information processing, and optoelectronics due to its long lifetime. On the other hand, it is notorious for being optically inaccessible from both excitation and detection standpoints. Here, we provide an efficient and low-loss solution to the dilemma by reintroducing photonics bound states in the continuum (BICs) to manipulate dark excitons in the momentum space. In a monolayer tungsten diselenide under normal incidence, we demonstrated a giant enhancement (~1400) for dark excitons enabled by transverse magnetic BICs with intrinsic out-of-plane electric fields. By further employing widely tunable Friedrich-Wintgen BICs, we demonstrated highly directional emission from the dark excitons with a divergence angle of merely 7°. We found that the directional emission is coherent at room temperature, unambiguously shown in polarization analyses and interference measurements. Therefore, the BICs reintroduced as a momentum-space photonic environment could be an intriguing platform to reshape and redefine light-matter interactions in nearby quantum materials, such as low-dimensional materials, otherwise challenging or even impossible to achieve.

3.
Sci Robot ; 7(63): eabl4543, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35196072

RESUMO

Compared to relatively mature audio and video human-machine interfaces, providing accurate and immersive touch sensation remains a challenge owing to the substantial mechanical and neurophysical complexity of touch. Touch sensations during relative lateral motion between a skin-screen interface are largely dictated by interfacial friction, so controlling interfacial friction has the potential for realistic mimicry of surface texture, shape, and material composition. In this work, we show a large modulation of finger friction by locally changing surface temperature. Experiments showed that finger friction can be increased by ~50% with a surface temperature increase from 23° to 42°C, which was attributed to the temperature dependence of the viscoelasticity and the moisture level of human skin. Rendering virtual features, including zoning and bump(s), without thermal perception was further demonstrated with surface temperature modulation. This method of modulating finger friction has potential applications in gaming, virtual and augmented reality, and touchscreen human-machine interaction.


Assuntos
Tecnologia Háptica , Percepção do Tato , Dedos , Fricção , Humanos , Temperatura
4.
Adv Mater ; 33(31): e2008337, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34173278

RESUMO

With the ubiquity of touch screens and the commercialization of electroadhesion-based surface haptic devices, modeling tools that capture the multiphysical phenomena within the finger-device interface and their interaction are critical to design devices that achieve higher performance and reliability at lower cost. While electroadhesion has successfully demonstrated the capability to change tactile perception through friction modulation, the mechanism of electroadhesion in the finger-device interface is still unclear, partly due to the complex interfacial physics including contact deformation, capillary formation, electric field, and their complicated coupling effects that have not been addressed comprehensively. A multiphysics model is presented here to predict the friction force for finger-surface tactile interactions at the nanoscale. The nanoscopic multiphysical phenomena are coupled to study the impacts of nanotexture and surface energy in the touch interface. With macroscopic friction force measurements as verification, the model is further used to propose textures that have maximum electroadhesion effect and minimum sensitivity to relative humidity and user perspiration rate. This model can guide the performance improvement of future electroadhesion-based surface haptic devices and other touch-based human-machine interfaces.


Assuntos
Fricção , Interface Háptica , Dedos , Humanos , Reprodutibilidade dos Testes , Percepção do Tato
5.
Langmuir ; 37(14): 4056-4063, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33793250

RESUMO

A large subset of haptic surfaces employs electroadhesion to modulate both adhesion and friction at a sliding finger interface. The current theory of electroadhesion assumes that the applied electric field pulls the skin into stronger contact, increasing friction by increasing the real contact area, yet it is unknown what role environmental moisture plays in the effect. This paper uses atomic force microscopy (AFM)to determine the effect of humidity on the adhesion and friction between the single nanoscale asperity and individual human finger corneocytes. An analytical model of the total effective load of the AFM tip is developed to explain the humidity-voltage dependence of nanoscale adhesion and friction at contacting asperities. The results show that the electrowetting effect at the interface at high humidity accounts for 35% of the adhesive force but less than 8% of the total friction, implying that the electrowetting effect can be enhanced by optimizing surface topography to promote the formation and rupture of liquid menisci.


Assuntos
Eletroumectação , Fricção , Nanoestruturas/química , Pele/citologia , Humanos , Umidade , Microscopia de Força Atômica
6.
ACS Appl Mater Interfaces ; 13(2): 3303-3310, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33417426

RESUMO

With the rapid development of haptic devices, there is an increasing demand to understand finger pad topography under different conditions, especially for investigation of the human-machine interface in surface haptic devices. An accurate description of finger pad topography across scales is essential for the study of the interfaces and could be used to predict the real area of contact and friction force, both of which correlate closely with human tactile perception. However, there has been limited work reporting the heterogeneous topography of finger pads across scales. In this work, we propose a detailed heterogeneous finger topography model based on the surface roughness power spectrum. The analysis showed a significant difference between the topography on ridges and valleys of the fingerprint and that the real contact area estimation could be different by a factor of 3. In addition, a spatial-spectral analysis method is developed to effectively compare topography response to different condition changes. This paper provides insights into finger topography for advanced human-machine interaction interfaces.


Assuntos
Dermatoglifia , Dedos/anatomia & histologia , Pele/anatomia & histologia , Dedos/fisiologia , Fricção , Humanos , Fenômenos Fisiológicos da Pele , Propriedades de Superfície , Tato
7.
IEEE Trans Haptics ; 13(3): 522-529, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32149656

RESUMO

With the commercialization of haptic devices, understanding behavior under various environmental conditions is crucial for product optimization and cost reduction. Specifically, for surface haptic devices, the dependence of the friction force and the electroadhesion effect on the environmental relative humidity and the finger hydration level can directly impact their design and performance. This article presents the influence of relative humidity on the finger-surface friction force and the electroadhesion performance. Mechanisms including changes to Young's modulus of skin, contact angle change and capillary force were analyzed separately with experimental and numerical methods. Through comparison of the calculated capillary force in this paper and the electroadhesion force calculated in published papers, it was found that electrowetting at high voltage could contribute up to 60% of the total friction force increase in electroadhesion. Therefore, in future design of surface haptic devices, the effect of electrowetting should be considered carefully.


Assuntos
Eletroumectação , Dedos , Fenômenos Físicos , Tato , Interface Usuário-Computador , Fricção , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...