Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 19(11): e1011044, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37956214

RESUMO

In budding yeast the Rif1 protein is important for protecting nascent DNA at blocked replication forks, but the mechanism has been unclear. Here we show that budding yeast Rif1 must interact with Protein Phosphatase 1 to protect nascent DNA. In the absence of Rif1, removal of either Dna2 or Sgs1 prevents nascent DNA degradation, implying that Rif1 protects nascent DNA by targeting Protein Phosphatase 1 to oppose degradation by the Sgs1-Dna2 nuclease-helicase complex. This functional role for Rif1 is conserved from yeast to human cells. Yeast Rif1 was previously identified as a target of phosphorylation by the Tel1/Mec1 checkpoint kinases, but the importance of this phosphorylation has been unclear. We find that nascent DNA protection depends on a cluster of Tel1/Mec1 consensus phosphorylation sites in the Rif1 protein sequence, indicating that the intra-S phase checkpoint acts to protect nascent DNA through Rif1 phosphorylation. Our observations uncover the pathway by which budding yeast Rif1 stabilises newly synthesised DNA, highlighting the crucial role Rif1 plays in maintaining genome stability from lower eukaryotes to humans.


Assuntos
DNA Helicases , Instabilidade Genômica , RNA Helicases , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Ligação a Telômeros , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , DNA Helicases/metabolismo , RNA Helicases/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Proteínas Repressoras/metabolismo , Pontos de Checagem do Ciclo Celular , Replicação do DNA
2.
J Neuroinflammation ; 19(1): 263, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36303157

RESUMO

BACKGROUND: Optic neuritis (ON) is a common manifestation of aquaporin-4 (AQP4) antibody seropositive neuromyelitis optica (NMO). The extent of tissue damage is frequently severe, often leading to loss of visual function, and there is no curative treatment for this condition. To develop a novel therapeutic strategy, elucidating the underlying pathological mechanism using a clinically relevant experimental ON model is necessary. However, previous ON animal models have only resulted in mild lesions with limited functional impairment. In the present study, we attempted to establish a feasible ON model with severe pathological and functional manifestations using a high-affinity anti-AQP4 antibody. Subsequently, we aimed to address whether our model is suitable for potential drug evaluation by testing the effect of minocycline, a well-known microglia/macrophage inhibitor. METHODS: AQP4-immunoglobulin G (IgG)-related ON in rats was induced by direct injection of a high-affinity anti-AQP4 monoclonal antibody, E5415A. Thereafter, the pathological and functional characterizations were performed, and the therapeutic potential of minocycline was investigated. RESULTS: We established an experimental ON model that reproduces the histological characteristics of ON in seropositive NMO, such as loss of AQP4/glial fibrillary acidic protein immunoreactivity, immune cell infiltration, and extensive axonal damage. We also observed that our rat model exhibited severe visual dysfunction. The histological analysis showed prominent accumulation of macrophages/activated microglia in the lesion site in the acute phase. Thus, we investigated the possible effect of the pharmacological inhibition of macrophages/microglia activation by minocycline and revealed that it effectively ameliorated axonal damage and functional outcome. CONCLUSIONS: We established an AQP4-IgG-induced ON rat model with severe functional impairments that reproduce the histological characteristics of patients with NMO. Using this model, we revealed that minocycline treatment ameliorates functional and pathological outcomes, highlighting the usefulness of our model for evaluating potential therapeutic drugs for ON in NMO.


Assuntos
Neuromielite Óptica , Neurite Óptica , Ratos , Animais , Minociclina/uso terapêutico , Aquaporina 4 , Autoanticorpos/metabolismo , Imunoglobulina G/metabolismo
3.
Inflamm Regen ; 42(1): 15, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35501933

RESUMO

Neuropathic pain is often chronic and can persist after overt tissue damage heals, suggesting that its underlying mechanism involves the alteration of neuronal function. Such an alteration can be a direct consequence of nerve damage or a result of neuroplasticity secondary to the damage to tissues or to neurons. Recent studies have shown that neuroplasticity is linked to causing neuropathic pain in response to nerve damage, which may occur adjacent to or remotely from the site of injury. Furthermore, studies have revealed that neuroplasticity relevant to chronic pain is modulated by microglia, resident immune cells of the central nervous system (CNS). Microglia may directly contribute to synaptic remodeling and altering pain circuits, or indirectly contribute to neuroplasticity through property changes, including the secretion of growth factors. We herein highlight the mechanisms underlying neuroplasticity that occur in the somatosensory circuit of the spinal dorsal horn, thalamus, and cortex associated with chronic pain following injury to the peripheral nervous system (PNS) or CNS. We also discuss the dynamic functions of microglia in shaping neuroplasticity related to chronic pain. We suggest further understanding of post-injury ectopic plasticity in the somatosensory circuits may shed light on the differential mechanisms underlying nociceptive, neuropathic, and nociplastic-type pain. While one of the prominent roles played by microglia appears to be the modulation of post-injury neuroplasticity. Therefore, future molecular- or genetics-based studies that address microglia-mediated post-injury neuroplasticity may contribute to the development of novel therapies for chronic pain.

4.
Elife ; 112022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35416772

RESUMO

RIF1 is a multifunctional protein that plays key roles in the regulation of DNA processing. During repair of DNA double-strand breaks (DSBs), RIF1 functions in the 53BP1-Shieldin pathway that inhibits resection of DNA ends to modulate the cellular decision on which repair pathway to engage. Under conditions of replication stress, RIF1 protects nascent DNA at stalled replication forks from degradation by the DNA2 nuclease. How these RIF1 activities are regulated at the post-translational level has not yet been elucidated. Here, we identified a cluster of conserved ATM/ATR consensus SQ motifs within the intrinsically disordered region (IDR) of mouse RIF1 that are phosphorylated in proliferating B lymphocytes. We found that phosphorylation of the conserved IDR SQ cluster is dispensable for the inhibition of DSB resection by RIF1, but is essential to counteract DNA2-dependent degradation of nascent DNA at stalled replication forks. Therefore, our study identifies a key molecular feature that enables the genome-protective function of RIF1 during DNA replication stress.


Assuntos
Quebras de DNA de Cadeia Dupla , Replicação do DNA , Animais , DNA/metabolismo , Reparo do DNA , Camundongos , Fosforilação , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
5.
Cereb Cortex ; 32(3): 504-519, 2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-34339488

RESUMO

Patients with neurodevelopmental disorders show impaired motor skill learning. It is unclear how the effect of genetic variation on synaptic function and transcriptome profile may underlie experience-dependent cortical plasticity, which supports the development of fine motor skills. RELN (reelin) is one of the genes implicated in neurodevelopmental psychiatric vulnerability. Heterozygous reeler mutant (HRM) mice displayed impairments in reach-to-grasp learning, accompanied by less extensive cortical map reorganization compared with wild-type mice, examined after 10 days of training by intracortical microstimulation. Assessed by patch-clamp recordings after 3 days of training, the training induced synaptic potentiation and increased glutamatergic-transmission of cortical layer III pyramidal neurons in wild-type mice. In contrast, the basal excitatory and inhibitory synaptic functions were depressed, affected both by presynaptic and postsynaptic impairments in HRM mice; and thus, no further training-induced synaptic plasticity occurred. HRM exhibited downregulations of cortical synaptophysin, immediate-early gene expressions, and gene enrichment, in response to 3 days of training compared with trained wild-type mice, shown using quantitative reverse transcription polymerase chain reaction, immunohistochemisty, and RNA-sequencing. We demonstrated that motor learning impairments associated with modified experience-dependent cortical plasticity are at least partially attributed by the basal synaptic alternation as well as the aberrant early experience-induced gene enrichment in HRM.


Assuntos
Plasticidade Neuronal , Células Piramidais , Animais , Heterozigoto , Humanos , Camundongos , Camundongos Mutantes Neurológicos , Destreza Motora/fisiologia , Plasticidade Neuronal/genética
6.
J Cell Sci ; 135(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34888666

RESUMO

The organisation of chromatin is closely intertwined with biological activities of chromosome domains, including transcription and DNA replication status. Scaffold-attachment factor A (SAF-A), also known as heterogeneous nuclear ribonucleoprotein U (HNRNPU), contributes to the formation of open chromatin structure. Here, we demonstrate that SAF-A promotes the normal progression of DNA replication and enables resumption of replication after inhibition. We report that cells depleted of SAF-A show reduced origin licensing in G1 phase and, consequently, reduced origin activation frequency in S phase. Replication forks also progress less consistently in cells depleted of SAF-A, contributing to reduced DNA synthesis rate. Single-cell replication timing analysis revealed two distinct effects of SAF-A depletion: first, the boundaries between early- and late-replicating domains become more blurred; and second, SAF-A depletion causes replication timing changes that tend to bring regions of discordant domain compartmentalisation and replication timing into concordance. Associated with these defects, SAF-A-depleted cells show elevated formation of phosphorylated histone H2AX (γ-H2AX) and tend to enter quiescence. Overall, we find that SAF-A protein promotes robust DNA replication to ensure continuing cell proliferation.


Assuntos
Cromossomos , Replicação do DNA , Cromatina/genética , Fase G1 , Origem de Replicação/genética , Fase S/genética
7.
Cell Rep ; 36(2): 109383, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260925

RESUMO

DNA double-strand breaks (DSBs) are repaired mainly by non-homologous end joining (NHEJ) or homologous recombination (HR). RIF1 negatively regulates resection through the effector Shieldin, which associates with a short 3' single-stranded DNA (ssDNA) overhang by the MRN (MRE11-RAD50-NBS1) complex, to prevent further resection and HR repair. In this study, we show that RIF1, but not Shieldin, inhibits the accumulation of CtIP at DSB sites immediately after damage, suggesting that RIF1 has another effector besides Shieldin. We find that protein phosphatase 1 (PP1), a known RIF1 effector in replication, localizes at damage sites dependent on RIF1, where it suppresses downstream CtIP accumulation and limits the resection by the MRN complex. PP1 therefore acts as a RIF1 effector distinct from Shieldin. Furthermore, PP1 deficiency in the context of Shieldin depletion elevates HR immediately after irradiation. We conclude that PP1 inhibits resection before the action of Shieldin to prevent precocious HR in the early phase of the damage response.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/metabolismo , Proteína Fosfatase 1/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Proteína BRCA1/metabolismo , Sequência de Bases , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Endodesoxirribonucleases/metabolismo , Células HeLa , Recombinação Homóloga/efeitos dos fármacos , Humanos , Complexos Multiproteicos/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Ligação Proteica/efeitos dos fármacos
8.
Science ; 372(6540): 371-378, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33888635

RESUMO

The temporal order of DNA replication [replication timing (RT)] is correlated with chromatin modifications and three-dimensional genome architecture; however, causal links have not been established, largely because of an inability to manipulate the global RT program. We show that loss of RIF1 causes near-complete elimination of the RT program by increasing heterogeneity between individual cells. RT changes are coupled with widespread alterations in chromatin modifications and genome compartmentalization. Conditional depletion of RIF1 causes replication-dependent disruption of histone modifications and alterations in genome architecture. These effects were magnified with successive cycles of altered RT. These results support models in which the timing of chromatin replication and thus assembly plays a key role in maintaining the global epigenetic state.


Assuntos
Período de Replicação do DNA , Epigênese Genética , Epigenoma , Proteínas de Ligação a Telômeros/metabolismo , Linhagem Celular , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Replicação do DNA , Expressão Gênica , Técnicas de Inativação de Genes , Genoma Humano , Heterocromatina/metabolismo , Código das Histonas , Histonas/metabolismo , Humanos , Proteínas de Ligação a Telômeros/genética
9.
Elife ; 92020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33141022

RESUMO

Human cells lacking RIF1 are highly sensitive to replication inhibitors, but the reasons for this sensitivity have been enigmatic. Here, we show that RIF1 must be present both during replication stress and in the ensuing recovery period to promote cell survival. Of two isoforms produced by alternative splicing, we find that RIF1-Long alone can protect cells against replication inhibition, but RIF1-Short is incapable of mediating protection. Consistent with this isoform-specific role, RIF1-Long is required to promote the formation of the 53BP1 nuclear bodies that protect unrepaired damage sites in the G1 phase following replication stress. Overall, our observations show that RIF1 is needed at several cell cycle stages after replication insult, with the RIF1-Long isoform playing a specific role during the ensuing G1 phase in damage site protection.


Assuntos
Núcleo Celular/genética , Replicação do DNA , Fase G1 , Proteínas de Ligação a Telômeros/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ciclo Celular , Linhagem Celular , Núcleo Celular/metabolismo , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Splicing de RNA , Proteínas de Ligação a Telômeros/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética
10.
JCI Insight ; 5(3)2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32051342

RESUMO

Central poststroke pain (CPSP) is one of the neuropathic pain syndromes that can occur following stroke involving the somatosensory system. However, the underlying mechanism of CPSP remains largely unknown. Here, we established a CPSP mouse model by inducing a focal hemorrhage in the thalamic ventrobasal complex and confirmed the development of mechanical allodynia. In this model, microglial activation was observed in the somatosensory cortex, as well as in the injured thalamus. By using a CSF1 receptor inhibitor, we showed that microglial depletion effectively prevented allodynia development in our CPSP model. In the critical phase of allodynia development, c-fos-positive neurons increased in the somatosensory cortex, accompanied by ectopic axonal sprouting of the thalamocortical projection. Furthermore, microglial ablation attenuated both neuronal hyperactivity in the somatosensory cortex and circuit reorganization. These findings suggest that microglia play a crucial role in the development of CPSP pathophysiology by promoting sensory circuit reorganization.


Assuntos
Axônios/patologia , Hemorragia Cerebral/patologia , Hiperalgesia/prevenção & controle , Microglia/patologia , Tálamo/patologia , Animais , Hemorragia Cerebral/complicações , Modelos Animais de Doenças , Camundongos , Neuralgia/complicações
12.
Cell Rep ; 27(9): 2558-2566.e4, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31141682

RESUMO

RIF1 is a multifunctional protein implicated in controlling DNA replication and repair. Here, we show that human RIF1 protects nascent DNA from over-degradation at stalled replication forks. The major nuclease resecting nascent DNA in the absence of RIF1 is DNA2, operating with WRN as an accessory helicase. We show that RIF1 acts with protein phosphatase 1 to prevent over-degradation and that RIF1 limits phosphorylation of WRN at sites implicated in resection control. Protection by RIF1 against inappropriate degradation prevents accumulation of DNA breakage. Our observations uncover a crucial function of human RIF1 in preventing genome instability by protecting forks from unscheduled DNA2-WRN-mediated degradation.


Assuntos
Replicação do DNA , DNA/metabolismo , Instabilidade Genômica , Receptores de Neuropeptídeo Y/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Helicase da Síndrome de Werner/metabolismo , DNA/química , DNA/genética , Células HEK293 , Humanos , Fosforilação , Receptores de Neuropeptídeo Y/genética , Proteínas de Ligação a Telômeros/genética , Helicase da Síndrome de Werner/genética
13.
EMBO Rep ; 19(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30104203

RESUMO

Despite its evolutionarily conserved function in controlling DNA replication, the chromosomal binding sites of the budding yeast Rif1 protein are not well understood. Here, we analyse genome-wide binding of budding yeast Rif1 by chromatin immunoprecipitation, during G1 phase and in S phase with replication progressing normally or blocked by hydroxyurea. Rif1 associates strongly with telomeres through interaction with Rap1. By comparing genomic binding of wild-type Rif1 and truncated Rif1 lacking the Rap1-interaction domain, we identify hundreds of Rap1-dependent and Rap1-independent chromosome interaction sites. Rif1 binds to centromeres, highly transcribed genes and replication origins in a Rap1-independent manner, associating with both early and late-initiating origins. Interestingly, Rif1 also binds around activated origins when replication progression is blocked by hydroxyurea, suggesting association with blocked forks. Using nascent DNA labelling and DNA combing techniques, we find that in cells treated with hydroxyurea, yeast Rif1 stabilises recently synthesised DNA Our results indicate that, in addition to controlling DNA replication initiation, budding yeast Rif1 plays an ongoing role after initiation and controls events at blocked replication forks.


Assuntos
Replicação do DNA/fisiologia , Origem de Replicação/fisiologia , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Sítios de Ligação/fisiologia , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Cromossomos de Plantas/química , DNA/metabolismo , Período de Replicação do DNA/fisiologia , Proteínas de Manutenção de Minicromossomo/metabolismo , Mutação , Proteína Fosfatase 1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Fase S/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Complexo Shelterina , Telômero/metabolismo , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/genética , Fatores de Transcrição/metabolismo
14.
Nucleic Acids Res ; 46(8): 3993-4003, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29529242

RESUMO

The Rif1 protein negatively regulates telomeric TG repeat length in the budding yeast Saccharomyces cerevisiae, but how it prevents telomere over-extension is unknown. Rif1 was recently shown to control DNA replication by acting as a Protein Phosphatase 1 (PP1)-targeting subunit. Therefore, we investigated whether Rif1 controls telomere length by targeting PP1 activity. We find that a Rif1 mutant defective for PP1 interaction causes a long-telomere phenotype, similar to that of rif1Δ cells. Tethering PP1 at a specific telomere partially substitutes for Rif1 in limiting TG repeat length, confirming the importance of PP1 in telomere length control. Ablating Rif1-PP1 interaction is known to cause precocious activation of telomere-proximal replication origins and aberrantly early telomere replication. However, we find that Rif1 still limits telomere length even if late replication is forced through deletion of nearby replication origins, indicating that Rif1 can control telomere length independent of replication timing. Moreover we find that, even at a de novo telomere created after DNA synthesis during a mitotic block, Rif1-PP1 interaction is required to suppress telomere lengthening and prevent inappropriate recruitment of Tel1 kinase. Overall, our results show that Rif1 controls telomere length by recruiting PP1 to directly suppress telomerase-mediated TG repeat lengthening.


Assuntos
Proteína Fosfatase 1/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Homeostase do Telômero , Proteínas de Ligação a Telômeros/metabolismo , Período de Replicação do DNA , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação , Proteínas Serina-Treonina Quinases/metabolismo , Origem de Replicação , Proteínas Repressoras/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Telômero/metabolismo , Proteínas de Ligação a Telômeros/genética
15.
J Physiol Sci ; 68(5): 629-637, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29027134

RESUMO

We focused on the analgesic effect of hot packs for mechanical hyperalgesia in physically inactive rats. Male Wistar rats were randomly divided into four groups: control, physical inactivity (PI), PI + sham treatment (PI + sham), and PI + hot pack treatment (PI + hot pack) groups. Physical inactivity rats wore casts on both hind limbs in full plantar flexed position for 4 weeks. Hot pack treatment was performed for 20 min a day, 5 days a week. Although mechanical hyperalgesia and the up-regulation of NGF in the plantar skin and gastrocnemius muscle were observed in the PI and the PI + sham groups, these changes were significantly suppressed in the PI + hot pack group. The present results clearly demonstrated that hot pack treatment was effective in reducing physical inactivity-induced mechanical hyperalgesia and up-regulation of NGF in plantar skin and gastrocnemius muscle.


Assuntos
Temperatura Alta , Hiperalgesia/terapia , Atividade Motora , Fator de Crescimento Neural/fisiologia , Animais , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica , Masculino , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Regulação para Cima
16.
EMBO Rep ; 18(3): 403-419, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28077461

RESUMO

The human RIF1 protein controls DNA replication, but the molecular mechanism is largely unknown. Here, we demonstrate that human RIF1 negatively regulates DNA replication by forming a complex with protein phosphatase 1 (PP1) that limits phosphorylation-mediated activation of the MCM replicative helicase. We identify specific residues on four MCM helicase subunits that show hyperphosphorylation upon RIF1 depletion, with the regulatory N-terminal domain of MCM4 being particularly strongly affected. In addition to this role in limiting origin activation, we discover an unexpected new role for human RIF1-PP1 in mediating efficient origin licensing. Specifically, during the G1 phase of the cell cycle, RIF1-PP1 protects the origin-binding ORC1 protein from untimely phosphorylation and consequent degradation by the proteasome. Depletion of RIF1 or inhibition of PP1 destabilizes ORC1, thereby reducing origin licensing. Consistent with reduced origin licensing, RIF1-depleted cells exhibit increased spacing between active origins. Human RIF1 therefore acts as a PP1-targeting subunit that regulates DNA replication positively by stimulating the origin licensing step, and then negatively by counteracting replication origin activation.


Assuntos
Replicação do DNA , Proteína Fosfatase 1/metabolismo , Origem de Replicação , Proteínas de Ligação a Telômeros/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Humanos , Proteínas de Manutenção de Minicromossomo/metabolismo , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteína Fosfatase 1/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise , Proteínas de Ligação a Telômeros/química
17.
Genes Dev ; 28(4): 372-83, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24532715

RESUMO

Initiation of eukaryotic DNA replication requires phosphorylation of the MCM complex by Dbf4-dependent kinase (DDK), composed of Cdc7 kinase and its activator, Dbf4. We report here that budding yeast Rif1 (Rap1-interacting factor 1) controls DNA replication genome-wide and describe how Rif1 opposes DDK function by directing Protein Phosphatase 1 (PP1)-mediated dephosphorylation of the MCM complex. Deleting RIF1 partially compensates for the limited DDK activity in a cdc7-1 mutant strain by allowing increased, premature phosphorylation of Mcm4. PP1 interaction motifs within the Rif1 N-terminal domain are critical for its repressive effect on replication. We confirm that Rif1 interacts with PP1 and that PP1 prevents premature Mcm4 phosphorylation. Remarkably, our results suggest that replication repression by Rif1 is itself also DDK-regulated through phosphorylation near the PP1-interacting motifs. Based on our findings, we propose that Rif1 is a novel PP1 substrate targeting subunit that counteracts DDK-mediated phosphorylation during replication. Fission yeast and mammalian Rif1 proteins have also been implicated in regulating DNA replication. Since PP1 interaction sites are evolutionarily conserved within the Rif1 sequence, it is likely that replication control by Rif1 through PP1 is a conserved mechanism.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Replicação do DNA/fisiologia , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteína Fosfatase 1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Replicação do DNA/genética , Mutação , Fosforilação , Estrutura Terciária de Proteína , Proteínas Repressoras/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ligação a Telômeros/genética , Temperatura
18.
Mol Biol Cell ; 23(14): 2741-54, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22496415

RESUMO

Chromatin function requires specific three-dimensional architectures of chromosomes. We investigated whether Saccharomyces cerevisiae extra TFIIIC (ETC) sites, which bind the TFIIIC transcription factor but do not recruit RNA polymerase III, show specific intranuclear positioning. We show that six of the eight known S. cerevisiae ETC sites localize predominantly at the nuclear periphery, and that ETC sites retain their tethering function when moved to a new chromosomal location. Several lines of evidence indicate that TFIIIC is central to the ETC peripheral localization mechanism. Mutating or deleting the TFIIIC-binding consensus ablated ETC -site peripheral positioning, and inducing degradation of the TFIIIC subunit Tfc3 led to rapid release of an ETC site from the nuclear periphery. We find, moreover, that anchoring one TFIIIC subunit at an ectopic chromosomal site causes recruitment of others and drives peripheral tethering. Localization of ETC sites at the nuclear periphery also requires Mps3, a Sad1-UNC-84-domain protein that spans the inner nuclear membrane. Surprisingly, we find that the chromatin barrier and insulator functions of an ETC site do not depend on correct peripheral localization. In summary, TFIIIC and Mps3 together direct the intranuclear positioning of a new class of S. cerevisiae genomic loci positioned at the nuclear periphery.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição TFIII/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/genética , Quinase do Ponto de Checagem 2 , Cromatina/fisiologia , DNA Polimerase III , Regulação Fúngica da Expressão Gênica , Proteínas Serina-Treonina Quinases/metabolismo , RNA Polimerase III/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição , Fatores de Transcrição TFIII/química , Fatores de Transcrição TFIII/genética
19.
Methods ; 57(2): 196-202, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22465796

RESUMO

Chromatin is dynamically regulated, and proteomic analysis of its composition can provide important information about chromatin functional components. Many DNA replication proteins for example bind chromatin at specific times during the cell cycle. Proteomic investigation can also be used to characterize changes in chromatin composition in response to perturbations such as DNA damage, while useful information is obtained by testing the effects on chromatin composition of mutations in chromosome stability pathways. We have successfully used the method of stable isotope labeling by amino acids in cell culture (SILAC) for quantitative proteomic analysis of normal and pathological changes to yeast chromatin. Here we describe this proteomic method for analyzing changes to Saccharomyces cerevisiae chromatin, illustrating the procedure with an analysis of the changes that occur in chromatin composition as cells progress from a G1 phase block (induced by alpha factor) into S phase (in the presence of DNA replication inhibitor hydroxyurea).


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/isolamento & purificação , Cromatina/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/isolamento & purificação , Hidroxiureia/farmacologia , Marcação por Isótopo , Inibidores da Síntese de Ácido Nucleico/farmacologia , Proteoma/metabolismo , Proteômica , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Esferoplastos/efeitos dos fármacos , Esferoplastos/genética , Esferoplastos/metabolismo , Espectrometria de Massas em Tandem
20.
Mol Cell Proteomics ; 10(7): M110.005561, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21505101

RESUMO

Yeast cells lacking Ctf18, the major subunit of an alternative Replication Factor C complex, have multiple problems with genome stability. To understand the in vivo function of the Ctf18 complex, we analyzed chromatin composition in a ctf18Δ mutant using the quantitative proteomic technique of stable isotope labeling by amino acids in cell culture. Three hundred and seven of the 491 reported chromosomal proteins were quantitated. The most marked abnormalities occurred when cells were challenged with the replication inhibitor hydroxyurea. Compared with wild type, hydroxyurea-treated ctf18Δ cells exhibited increased chromatin association of replisome progression complex components including Cdc45, Ctf4, and GINS complex subunits, the polymerase processivity clamp PCNA and the single-stranded DNA-binding complex RPA. Chromatin composition abnormalities observed in ctf18Δ cells were very similar to those of an mrc1Δ mutant, which is defective in the activating the Rad53 checkpoint kinase in response to DNA replication stress. We found that ctf18Δ cells are also defective in Rad53 activation, revealing that the Ctf18 complex is required for engagement of the DNA replication checkpoint. Inappropriate initiation of replication at late origins, because of loss of the checkpoint, probably causes the elevated level of chromatin-bound replisome proteins in the ctf18Δ mutant. The role of Ctf18 in checkpoint activation is not shared by all Replication Factor C-like complexes, because proteomic analysis revealed that cells lacking Elg1 (the major subunit of a different Replication Factor C-like complex) display a different spectrum of chromatin abnormalities. Identification of Ctf18 as a checkpoint protein highlights the usefulness of chromatin proteomic analysis for understanding the in vivo function of proteins that mediate chromatin transactions.


Assuntos
Ciclo Celular , Cromatina/metabolismo , Replicação do DNA , Proteoma/análise , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Técnicas de Inativação de Genes , Instabilidade Genômica , Marcação por Isótopo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteoma/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...