Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 89(9): 2457-2467, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747960

RESUMO

To investigate the physicochemical conditions necessary to stably remove antibiotic-resistant bacteria (ARB) via contact with activated sludge (AS), the adhesion of ciprofloxacin (CIP)-resistant and -susceptible Escherichia coli to AS was simulated by contact tests in the laboratory. The CIP-resistant E. coli and susceptible E. coli were removed by a 3 log smaller concentration by a 5 h contact test at maximum. Considering the hydraulic retention time of a reaction tank (∼5 h) and step-feeding operation, we considered the removal rate of E. coli in the current simulated contact test to be in agreement with the actual situation where 1-2 log concentrations of E. coli were reported to be removed from an AS reaction tank. With the increase in the AS concentration and/or dissolved oxygen, the removal rate of E. coli increased. The removal rate of CIP-resistant E. coli was greater than that of susceptible E. coli under all experimental conditions. Although the mechanism by which CIP-resistant E. coli preferably adhered to AS was not clearly understood in detail, finding optimum conditions under which bacteria, including ARB, were efficiently removed by the AS process may be possible.


Assuntos
Aderência Bacteriana , Ciprofloxacina , Farmacorresistência Bacteriana , Escherichia coli , Esgotos , Ciprofloxacina/farmacologia , Escherichia coli/efeitos dos fármacos , Esgotos/microbiologia , Aderência Bacteriana/efeitos dos fármacos , Antibacterianos/farmacologia
2.
Water Res ; 246: 120689, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37801983

RESUMO

As urban rivers are domestic, industrial, and agricultural water resources, fecal pollution poses human health and environmental risks. In this study, we developed a simple and rapid method to detect fecal pollution in urban rivers. Water samples were mixed with liquid medium, including a fluorescent substrate and fluorescence intensity (F.I.) was measured using a microplate reader to determine Escherichia coli (E. coli) ß-D-glucuronidase (GUS) activity instead of E. coli concentration. GUS activities measurements in pure E. coli cultures revealed that E. coli incubated with a GUS substrate accumulated GUS enzymes in their cells, whereas those incubated without a GUS substrate did not. The increase in GUS activity corresponded to the proliferation of E. coli and the GUS activity increased linearly even during the lag growth phase of E. coli, indicating the presence of intrinsic GUS (iGUS) in E. coli cells before incubation. iGUS activity persisted at 81 % in the chlorinated samples, even though the E. coli concentration was reduced by a factor of 106. The iGUS activity persisted for approximately three days. Therefore, we assumed that E. coli present in fecal contaminants, in which GUS substrates are present, could be distinguished from those surviving in the natural environment for three days or longer by measuring iGUS activity. River water samples were collected upstream and downstream of the discharge outlets of municipal wastewater treatment plants and a combined sewer outlet. The iGUS activities were <0.24 mMFU/mL for the upstream samples and >0.21 mMFU/mL for the downstream samples. Interestingly, E. coli concentrations were not necessarily associated with fecal pollution. This indicates that by setting a threshold for iGUS activity, our method can be used as a simple and rapid method for detecting fecal pollution in urban rivers. Because the limit of detection for our method is 20 CFU/mL, our method is applicable to detecting high fecal pollution in a small river.


Assuntos
Escherichia coli , Microbiologia da Água , Humanos , Qualidade da Água , Monitoramento Ambiental/métodos , Fezes , Glucuronidase , Água , Poluição da Água
3.
Water Res ; 217: 118397, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35421690

RESUMO

Migratory geese could influence the microbiological water quality; however, their impacts on pathogen dynamics remain largely unknown. In this study, we analyzed the population dynamics of Campylobacter and Arcobacter group bacteria (AGB) in a freshwater lake in Japan over two years. The bacteria were quantified by using both culture-dependent and -independent methods. The potential sources of these bacteria were examined by a high-throughput flaA sequencing approach. Campylobacter was abundantly detected both by culture-dependent and -independent methods in the lake, especially when migratory geese were present in the lake. High-throughput flaA sequencing suggests that geese were the likely source of Campylobacter in the lake. The viable population of Campylobacter exceeds the concentrations that can potentially cause 10-4 infections per person per year when water is used to grow fresh vegetables. The occurrence of AGB, on the other hand, was not directly related to the population of migratory geese. AGB were not detected in geese fecal samples. Diverse AGB flaA genotypes occurred in the lake over multiple seasons. Our results suggest that AGB likely comprise a part of the indigenous microbial population of the lake and grow in response to high nutrient, warm temperature, and low dissolved oxygen concentrations in the lake. Geese therefore can indirectly impact the AGB population by providing nutrients to cause eutrophication and lower the dissolved oxygen concentration. Since geese travel long-distance and disperse their fecal microbiota and nutrients to wide areas, they may have significant impacts on water quality and public health.


Assuntos
Arcobacter , Campylobacter , Animais , Bactérias/genética , Campylobacter/genética , Gansos/microbiologia , Humanos , Lagos , Oxigênio
4.
Water Sci Technol ; 83(6): 1399-1406, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33767045

RESUMO

Monitoring of Escherichia coli concentrations in river water (RW) is essential to identify fecal pollution of the river. The objective of this study was to assess the suitability of a novel, simple and high throughput method developed in our laboratory to enumerate E. coli concentrations in RW samples. The method is based on the use of the synthetic substrate specific for the ß-d-glucuronidase (GUS) produced by E. coli. GUS activities and E. coli concentrations were monitored at eight selected sites in rivers running through Sapporo, Japan. Because the fluorescence intensities of the synthetic substrate in the RW samples increased linearly over a 4-h incubation period, we could estimate the GUS activities of the RW samples. The GUS activities were highly correlated with E. coli concentrations at >100 most probable numbers 100 mL-1 with a correlation coefficient of 0.87. The GUS activities of the RW samples collected from all sampling sites fitted well to a single correlation equation, which indicates that it was applicable to the estimation of E. coli concentrations regardless of the sampling sites. This method is simple, rapid, reliable, inexpensive, and high throughput, and is therefore useful for monitoring E. coli in RW.


Assuntos
Escherichia coli , Rios , Monitoramento Ambiental , Glucuronidase , Japão , Água , Microbiologia da Água
5.
Chemosphere ; 263: 128331, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297260

RESUMO

Domestic and industrial wastewater treatment systems are vital in the protection of natural ecosystems and human health. Identification of microbial communities in the systems is essential to stable treatment performance. However, the current tools of microbial community analysis are labor intensive and time consuming, and require expensive equipment. Therefore, we developed a simple assay for colorimetric quantification of bacterial 16S rRNA extracted from environmental samples. The assay is based on RNA extraction with commercial kits, mixing the unamplified RNA sample with Au-nanoprobes and NaCl, and analyzing the absorbance spectra. Our experimental results confirmed that the assay format was valid. By analyzing the synthesized DNA, we optimized the operational parameters affecting the assay. We achieved adequate capture DNA density by setting the capture DNA probe concentration at 10 µM during the functionalization step. The required incubation time after NaCl addition was 30 min. The binding site of the target had negligible effect on DNA detection. Under the optimized condition, a calibration curve was created using 16S rRNA extracted from activated sludge. The curve was linear above 5.0 × 107 copies/µL of bacterial 16S rRNA concentration, and the limit of detection was 1.17 × 108 copies/µL. Using the calibration curve, the bacterial 16S rRNA concentration in activated sludge samples could be quantified with deviations between 48% and 208% against those determined by RT-qPCR. The findings of our study introduce an innovative tool for the quantification of 16S rRNA concentration as the activity of key bacteria in wastewater treatment processes, achieving stable treatment performance.


Assuntos
Colorimetria , Esgotos , Bactérias/genética , DNA Bacteriano , Ouro , Humanos , RNA Ribossômico 16S/genética
6.
Sci Total Environ ; 715: 136928, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32007893

RESUMO

Monitoring of Escherichia coli concentrations at wastewater treatment plants (WWTPs) is important to ensure process performance and protect public health. However, conventional E. coli enumeration methods are complicated and time- and labor-consuming. Here, we report a novel simple and reliable method based on ß-d-glucuronidase (GUS) activity assay to enumerate E. coli concentrations in wastewater (WW) samples. An aliquot (20 µL) of the medium with fluorogenic enzyme substrate for E. coli and 180 µL of a WW sample were added to one well of a 96-well microplate. The microplate was placed in a microplate reader at 37 °C. To this end, the fluorescence intensity of a fluorogenic enzyme substrate for E. coli was measured every 10 min over 3 h to determine GUS activity. The linear increase in the fluorescence intensity representing the GUS activities showed a positive correlation with E. coli concentrations in wastewater samples. However, the correlation equations were specific to WWTPs, which could be due to the difference in the E. coli population structures among WWTPs. We observed that the wastewater matrix is not a limitation to measure the GUS activity, and a WWTP-specific correlation equation can be used as a calibration curve to estimate the E. coli concentrations in the samples collected from that site. A comparison of the results with those of culture-dependent Colilert method proved that the current method is simple and useful for the enumeration of E. coli concentrations in wastewater samples reliably.


Assuntos
Escherichia coli , Glucuronidase , Águas Residuárias
7.
Chemosphere ; 224: 538-543, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30836249

RESUMO

A simple analytical method was developed to determine the arsenite (As(III)) concentration using a DNA aptamer and gold nanoparticles (AuNPs). Prior to sample measurements, the method sensing mechanism was confirmed by analyzing the particle size of the AuNPs at each step of the analysis procedure, and the key operational parameters that affect the method performance were optimized. The optimal final NaCl concentration, incubation time with NaCl and pH of a 3-(N-morpholino) propanesulfonic acid buffer were 60 mM, 10 min and 7.3, respectively. A calibration curve was created under optimized operational conditions. The calibration curve was linear from a 1.0- to 10-µM As(III) concentration. The detection limit was 2.1 µM (161 µg/L). Using the calibration curve, we evaluated groundwater samples spiked with As(III). As(III) concentrations in groundwater pretreated with a 0.2-µm-pore-size membrane filter and cation-exchange resin were determined by using the method, which suggests that the proposed method can be used to determine the As(III) concentration in groundwater.


Assuntos
Aptâmeros de Nucleotídeos/química , Arsenitos/análise , Ouro/química , Nanopartículas Metálicas/química , Limite de Detecção
8.
BMC Genomics ; 12: 428, 2011 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-21864382

RESUMO

BACKGROUND: In Escherichia coli, approximately 100 regulatory small RNAs (sRNAs) have been identified experimentally and many more have been predicted by various methods. To provide a comprehensive overview of sRNAs, we analysed the low-molecular-weight RNAs (< 200 nt) of E. coli with deep sequencing, because the regulatory RNAs in bacteria are usually 50-200 nt in length. RESULTS: We discovered 229 novel candidate sRNAs (≥ 50 nt) with computational or experimental evidence of transcription initiation. Among them, the expression of seven intergenic sRNAs and three cis-antisense sRNAs was detected by northern blot analysis. Interestingly, five novel sRNAs are expressed from prophage regions and we note that these sRNAs have several specific characteristics. Furthermore, we conducted an evolutionary conservation analysis of the candidate sRNAs and summarised the data among closely related bacterial strains. CONCLUSIONS: This comprehensive screen for E. coli sRNAs using a deep sequencing approach has shown that many as-yet-undiscovered sRNAs are potentially encoded in the E. coli genome. We constructed the Escherichia coli Small RNA Browser (ECSBrowser; http://rna.iab.keio.ac.jp/), which integrates the data for previously identified sRNAs and the novel sRNAs found in this study.


Assuntos
Escherichia coli/genética , Sequenciamento de Nucleotídeos em Larga Escala , RNA Bacteriano/genética , Biologia Computacional/métodos , DNA Intergênico/genética , Bases de Dados Genéticas , Genoma Bacteriano , Genômica/métodos , RNA Antissenso/genética , Análise de Sequência de RNA
9.
Proc Natl Acad Sci U S A ; 106(8): 2683-7, 2009 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-19190180

RESUMO

Transfer RNA (tRNA) is essential for decoding the genome sequence into proteins. In Archaea, previous studies have revealed unique multiple intron-containing tRNAs and tRNAs that are encoded on 2 separate genes, so-called split tRNAs. Here, we discovered 10 fragmented tRNA genes in the complete genome of the hyperthermoacidophilic Archaeon Caldivirga maquilingensis that are individually transcribed and further trans-spliced to generate all of the missing tRNAs encoding glycine, alanine, and glutamate. Notably, the 3 mature tRNA(Gly)'s with synonymous codons are created from 1 constitutive 3' half transcript and 4 alternatively switching transcripts, representing tRNA made from a total of 3 transcripts named a "tri-split tRNA." Expression and nucleotide sequences of 10 split tRNA genes and their joined tRNA products were experimentally verified. The intervening sequences of split tRNA have high identity to tRNA intron sequences located at the same positions in intron-containing tRNAs in related Thermoproteales species. This suggests that an evolutionary relationship between intron-containing and split tRNAs exists. Our findings demonstrate the first example of split tRNA genes in a free-living organism and a unique tri-split tRNA gene that provides further insight into the evolution of fragmented tRNAs.


Assuntos
Archaea/genética , Evolução Molecular , RNA de Transferência/genética , Processamento Alternativo , Sequência de Bases , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA de Transferência/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...