Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(7)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37879348

RESUMO

Inelastic x-ray scattering (IXS) measurements were performed for observing the excitation of bulk plasmons in metallic liquid silicon (Si). The peak due to plasmon excitation was observed within the energy loss around 17 eV. Combined with IXS data of crystalline Si measured at several elevated temperatures, it was found that temperature dependence of the excitation energy in the crystalline solid state is explained by the electron gas including the band gap effect, whereas in the metallic liquid state near the melting point, it exhibits a departure from the electron gas; the plasmon energy takes a lower value than that of the electron gas. Such lowering of plasmon energies is reasonably explained by a model incorporating semiconducting component to the electron gas. Non-simple metallic nature in liquid silicon is highlighted by the observation of electron collective dynamics.

2.
Nat Commun ; 14(1): 5245, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640719

RESUMO

One challenge for realizing high-efficiency electrocatalysts for CO2 electroreduction is lacking in comprehensive understanding of potential-driven chemical state and dynamic atomic-configuration evolutions. Herein, by using a complementary combination of in situ/operando methods and employing copper single-atom electrocatalyst as a model system, we provide evidence on how the complex interplay among dynamic atomic-configuration, chemical state change and surface coulombic charging determines the resulting product profiles. We further demonstrate an informative indicator of atomic surface charge (φe) for evaluating the CO2RR performance, and validate potential-driven dynamic low-coordinated Cu centers for performing significantly high selectivity and activity toward CO product over the well-known four N-coordinated counterparts. It indicates that the structural reconstruction only involved the dynamic breaking of Cu-N bond is partially reversible, whereas Cu-Cu bond formation is clearly irreversible. For all single-atom electrocatalysts (Cu, Fe and Co), the φe value for efficient CO production has been revealed closely correlated with the configuration transformation to generate dynamic low-coordinated configuration. A universal explication can be concluded that the dynamic low-coordinated configuration is the active form to efficiently catalyze CO2-to-CO conversion.

3.
ACS Appl Mater Interfaces ; 15(12): 16177-16188, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36939741

RESUMO

Fuel cells are considered potential energy conversion devices for utopia; nevertheless, finding a highly efficacious and economical electrocatalyst for the oxygen reduction reaction (ORR) is of great interest. By keeping this in view, we have proposed a novel design of a trimetallic nanocatalyst (NC) comprising atomic Pt clusters at the heterogeneous Ni(OH)2-to-Pd interface (denoted NPP-70). The as-prepared material surpasses the commercial J.M.-Pt/C (20 wt %) catalyst by ∼ 166 and ∼19 times with exceptionally high specific and mass activities of 16.11 mA cm-2 and 484.8 mA mgPt-1 at 0.90 V versus reversible hydrogen electrode (RHE) in alkaline ORR (0.1 M KOH), respectively. On top of that, NPP-70 NC retains nearly 100% performance after 10k accelerated durability test (ADT) cycles. The results of physical characterization and electrochemical analysis confirm that atomic-scale Pt clusters induce strong lattice strain (compressive) at the Ni(OH)2-to-Pd interface, which triggers the electron relocation from Ni to Pt atoms. Such charge localization is vital for O2 splitting on surface Pt atoms, followed by the relocation of OH- ions from the Pd surface. Besides, a sharp fall down in ORR performance (mass activity is 37 mA mgPt-1 at 0.90 V versus RHE) is observed when the Pt clusters are decorated on the surface of NiOx and Pd (denoted NPP-RT). In situ partial fluorescence yield mode X-ray absorption spectroscopy (PFY-XAS) was employed to reveal the ORR pathways on both configurations. The obtained results demonstrate that interface engineering can be a potential approach to boost the electrocatalytic activity of metal hydroxide/oxide-supported Pd nanoparticles and in turn allow Pd to be a promising alternative for commercial Pt catalysts.

4.
Sci Rep ; 12(1): 7789, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35552481

RESUMO

High-entropy-alloy (HEA) superconductors are a new class of disordered superconductors. However, commonality of superconducting characteristics of HEA materials is unclear. Here, we have investigated the crystal and electronic structure, and the robustness of superconducting states in a HEA-type metal telluride (MTe; M = Ag, In, Sn, Pb, Bi) under high pressure, and the results were compared with the pressure effects for a middle-entropy system (AgPbBiTe3) and a reference system of PbTe. When the crystal structure is CsCl-type, all phases show superconductivity under high pressure but exhibit different pressure dependences of the transition temperature (Tc). For PbTe, its Tc decreases with pressure. In contrast, the Tc of HEA-type AgInSnPbBiTe5 is almost independent of pressure, for pressures ranging from 13.0 to 35.1 GPa. Those results suggest that the robustness of superconductivity to external pressure is linked to the configurational entropy of mixing at the M site in MTe. Since the trend is quite similar to previous work on a HEA (Ti-Zr-Hf-Nb-Ta), where the robustness of superconductivity was observed up to ~ 200 GPa, we propose that the robustness of superconductivity under high pressure would be a universal feature in HEA-type superconductors.

5.
J Phys Condens Matter ; 34(25)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35354125

RESUMO

The hydrostatic pressure dependent evolution of the electronic and magnetic structure of LaCo5and YCo5was investigated by means of x-ray emission spectroscopy, x-ray diffraction, and spin-polarized density functional theory (DFT) calculations. Using experimental lattice parameters the DFT correctly predicts the pressure of the magnetic transition in both compounds to be 26 GPa (La) and 22-23 GPa (Y). The transition was experimentally resolved in the changes of the electronic structure via the integrated absolute difference of the CoKßemission spectra. Comparison of theory and experiment confirm for the first time a common feature in both LaCo5and YCo5to be the source of the transition; the Fermi-level crossing of an up-spin polarized flat band driving the systems into a low spin configuration via a Lifshitz type transition of the Fermi surface. Another phase transition observed around 12 GPa in LaCo5was clarified to be caused by the change in the down-spin density of states at the Fermi level.

6.
J Phys Condens Matter ; 33(25)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-33890871

RESUMO

We examine electronic and crystal structures of iron-based superconductorsLnFeAsO1-xHx(Ln= La, Sm) under pressure by means of x-ray absorption spectroscopy (XAS), x-ray emission spectroscopy (XES), and x-ray diffraction. In LaFeAsO the pre-edge peak on high-resolution XAS at the Fe-Kabsorption edge gains in intensity on the application of pressure up to 5.7 GPa and it saturates in the higher pressure region. We found integrated-absolute difference values on XES forLn= La, corresponding to a spin state, decline on the application of pressure, and then it is minimized when theTcapproaches the maximum at around 5 GPa. In contrast, such the optimum value was not detected forLn= Sm. We reveal that the superconductivity is closely related to the lower spin state forLn= La unlike Sm case. We observed that As height from the Fe basal plane and As-Fe-As angle on the FeAs4tetrahedron forLn= La deviate from the optimum values of the regular tetrahedron in superconducting (SC) phase, which has been widely accepted structural guide to SC thus far. In contrast, the structural parameters were held near the optimum values up to ∼15 GPa forLn= Sm.

7.
J Phys Condens Matter ; 33(25)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-33878750

RESUMO

A carrier doping by a hydrogen substitution in LaFeAsO1-xHxis known to cause two superconducting (SC) domes with the magnetic order at both end sides of the doping. In contrast, SmFeAsO1-xHxhas a similar phase diagram but shows single SC dome. Here, we investigated the electronic and crystal structures for iron oxynitrideLnFeAsO1-xHx(Ln= La, Sm) with the range ofx= 0-0.5 by using x-ray absorption spectroscopy, x-ray emission spectroscopy, and x-ray diffraction. For both compounds, we observed that the pre-edge peaks of x-ray absorption spectra near the Fe-Kedge were reduced in intensity on doping. The character arises from the weaker As-Fe hybridization with the longer As-Fe distance in the higher doped region. We can reproduce the spectra near the Fe-Kedge according to the Anderson impurity model with realistic valence structures using the local-density approximation (LDA) plus dynamical mean-field theory (DMFT). ForLn= Sm, the integrated-absolute difference (IAD) analysis from x-ray Fe-Kßemission spectra increases significantly. This is attributed to the enhancement of magnetic moment of Fe 3delectrons stemming from the localized picture in the higher doped region. A theoretical simulation implementing the self-consistent vertex-correction method reveals that the single dome superconducting phase forLn= Sm arises from a better nesting condition in comparison withLn= La.

8.
Sci Rep ; 10(1): 17116, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33051557

RESUMO

Non-Fermi-liquid (NFL), a significant deviation from Fermi-liquid theory, usually emerges near an order-disorder phase transition at absolute zero. Recently, a diverging susceptibility toward zero temperature was observed in a quasicrystal (QC). Since an electronic long-range ordering is normally absent in QCs, this anomalous behaviour should be a new type of NFL. Here we study high-resolution partial-fluorescence-yield x-ray absorption spectroscopy on Yb-based intermediate-valence icosahedral QCs and cubic approximant crystals (ACs), some of which are new materials, to unveil the mechanism of the NFL. We find that for both forms of QCs and ACs, there is a critical lattice parameter where Yb-valence and magnetism concomitantly exhibit singularities, suggesting a critical-valence-fluctuation-induced NFL. The present result provides an intriguing structure-property relationship of matter; size of a Tsai-type cluster (that is a common local structure to both forms) tunes the NFL whereas translational symmetry (that is present in ACs but absent in QCs) determines the nature of the NFL against the external/chemical pressure.

9.
Nanoscale ; 12(28): 15185-15192, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32657291

RESUMO

The promoting effect of cobalt on the catalytic activity of a NiCoO Dry Methane Reforming (DMR) catalyst was studied by a combination of in situ Kß X-ray Emission Spectroscopy (XES) and Kß-detected High Energy Resolution Fluorescence Detected X-ray absorption spectroscopy (HERFD XAS). Following the calcination process, Ni XES and Kß-detected HERFD XAS data revealed that the NiO coordination in the NiCoO catalyst has a higher degree of symmetry and is different than that of pure NiO/γ-Al2O3. Following the reductive activation, it was found that the NiCoO/γ-Al2O3 catalyst required a relatively higher temperature compared to the monometallic NiO/γ-Al2O3 catalyst. This finding suggests that Co is hampering the reduction of Ni in the NiCoO catalyst by modulation of its electronic structure. It has also been previously shown that the addition of Co enhances the DMR activity. Further, the Kß XES spectrum of the partly reduced catalysts at 450 °C reveals that the Ni sites in the NiCoO catalyst are electronically different from the NiO catalyst. The in situ X-ray spectroscopic study demonstrates that reduced metallic Co and Ni are the primary species present after reduction and are preserved under DMR conditions. However, the NiCo catalyst appears to always be somewhat more oxidized than the Ni-only species, suggesting that the presence of cobalt modulates the Ni electronic structure. The electronic structural modulations resulting from the presence of Co may be the key to the increased activity of the NiCo catalyst relative to the Ni-only catalyst. This study emphasizes the potential of in situ X-ray spectroscopy experiments for probing the electronic structure of catalytic materials during activation and under operating conditions.

10.
J Chem Phys ; 152(3): 034304, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31968971

RESUMO

For the inelastic electron scattering of atoms and molecules, a consensus has been reached that the first Born approximation is easily approached by decreasing the momentum transfer at the same impact electron energy or increasing the impact electron energy at the same momentum transfer. Although this consensus is applicable for the elastic electron scattering of most atoms and molecules, it is violated for helium where the experimental differential cross sections deviate from the first Born approximation prediction gradually with the decrease of squared momentum transfer at the same impact electron energy. Since this anomalous phenomenon was observed more than 40 years ago, the intrinsic mechanism is not explicit. In the present work, using the high-resolution x-ray scattering, we isolate the scattering contribution from the nucleus and directly obtain the pure electronic structure of helium. Then, the anomalous asymptotic behavior of the elastic electron scattering of helium has been elucidated, i.e., in the small squared momentum transfer region, the scattering contribution from the target's electrons is counteracted by the one from the atomic nucleus, which results in the residual contribution beyond the first Born approximation being drastically enlarged.

11.
Proc Natl Acad Sci U S A ; 116(43): 21385-21391, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31597738

RESUMO

Electronic structures of dense solid oxygen have been investigated up to 140 GPa with oxygen K-edge X-ray Raman scattering spectroscopy with the help of ab initio calculations based on density functional theory with semilocal metageneralized gradient approximation and nonlocal van der Waals density functionals. The present study demonstrates that the transition energies (Pi*, Sigma*, and the continuum) increase with compression, and the slopes of the pressure dependences then change at 94 GPa. The change in the slopes indicates that the electronic structure changes at the metallic transition. The change in the Pi* and Sigma* bands implies metallic characteristics of dense solid oxygen not only in the crystal a-b plane but also parallel to the c axis. The pressure evolution of the spectra also changes at ∼40 GPa. The experimental results are qualitatively reproduced in the calculations, indicating that dense solid oxygen transforms from insulator to metal via the semimetallic transition.

12.
J Phys Condens Matter ; 31(18): 185501, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30731441

RESUMO

We report the high-pressure behavior of plasmon in polycrystalline Li up to 15 GPa at room temperature studied by inelastic x-ray scattering and ab initio calculation. The plasmon energy ([Formula: see text]) increases with decreasing atomic volume ([Formula: see text]), and the [Formula: see text] slope exhibits a discontinuity at bcc → fcc structural phase boundary reflecting the electronic band structure change. The plasmon peak width ([Formula: see text]) versus momentum transfer (q) curve of bcc-Li below 6.5 GPa keeps similar parabola-like shape. Above 8.4 GPa, where Li is in fcc, it changes from that of bcc-Li and has a convex shape.

13.
J Am Chem Soc ; 140(49): 17263-17270, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30441896

RESUMO

Composite electrocatalysts have exhibited high activities toward water electrolysis, but the catalytically active sites really in charge of the reaction are still debatable while the conventional in situ X-ray spectroscopies are not capable of conclusively identifying the interaction of these materials with the electrolyte because of the complexity of catalysis. In this work, by utilization of operando Kß1,3 high-energy resolution fluorescence-detected X-ray absorption spectroscopy (HERFD-XAS) with a small incident angle, the operando quadrupole transition obviously showed that oxygen directly interacted with 3d orbitals of Co ions rather than that of Fe ions. Most importantly, Fe ions can promote the stabilization of the Co ions under a higher valent state during water oxidation, which may lead to a stable intermediate of reactant and its superior intrinsic activity. Accompanied by the first-principle calculations, the intermediates between 3d orbitals for surface Co ions and O 2p orbitals for the attaching hydroxide ions were ascribed to this orbital hybridization. Because of the unvaried structural features in conventional in situ techniques, operando HERFD-XAS revealed the remarkable change of chemical status to correlate with the orbital interaction rather than with the structural variation. This operando HERFD-XAS approach corresponding to the local orbital interaction in reactant/catalyst interface can potentially offer synergetic strategies toward realizing the chemical reactions or reaction pathways in various fields.

14.
J Phys Chem Lett ; 9(15): 4182-4188, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-29979596

RESUMO

One challenge in studying high-temperature superconductivity (HTSC) stems from a lack of direct experimental evidence linking lattice inhomogeneity and superconductivity. Here, we apply synchrotron hard X-ray nanoimaging and small-angle scattering to reveal a novel micron-scaled ribbon phase in optimally doped Bi2Sr2CaCu2O8+δ (Bi-2212, with δ = 0.1). The morphology of the ribbon-like phase evolves simultaneously with the dome-shaped TC behavior under pressure. X-ray absorption studies show that the increasing of TC is associated with oxygen-hole redistribution in the CuO2 plan, while TC starts to decrease with pressure when oxygen holes become immobile. Additional X-ray irradiation experiments reveal that nanoscaled short-range ordering of oxygen vacancies could further lower TC, which indicates that the optimal TC is affected not only by an optimal morphology of the ribbon phase, but also an optimal distribution of oxygen vacancies. Our studies thereby provide for the first time compelling experimental evidence correlating the TC with micron to nanoscale inhomogeneity.

15.
J Phys Condens Matter ; 29(47): 475502, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-28891807

RESUMO

Electronic structures of ferromagnetic heavy fermion Yb compounds of YbPdSi, YbPdGe, and YbPtGe are studied by photoelectron spectroscopy around the Yb 4d-4f resonance, resonant x-ray emission spectroscopy at the Yb L 3 absorption edge, and density functional theory combined with dynamical mean field theory calculations. These compounds all have a temperature-independent intermediate Yb valence with large [Formula: see text] and small [Formula: see text] components. The magnitude of the Yb valence is evaluated to be YbPtGe [Formula: see text] YbPdGe [Formula: see text] YbPdSi, suggesting that YbPtGe is the closest to the quantum critical point among the three Yb compounds. Our results support the scenario of the coexistence of heavy fermion behavior and ferromagnetic ordering which is described by a magnetically-ordered Kondo lattice where the magnitude of the Kondo effect and the RKKY interaction are comparable.

16.
Dalton Trans ; 46(35): 11664-11668, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28831472

RESUMO

High-resolution partial-fluorescence-yield X-ray absorption and resonant X-ray emission spectra were used to characterize the temperature dependence of Sm 4f configurations and orbital/charge degree of freedom in SmB6. The variation of Sm 4f configurations responds well to the formed Kondo gap, below 140 K, and an in-gap state, below 40 K. The topological in-gap state is correlated with the fluctuating population of Sm 4f configurations that arises via carrier transfer between 3d94f6 and 3d94f5 states; both states are partially delocalized, and the mediating 5d orbital plays the role of a transfer path. Complementary results shown in this work thus manifest the importance of configuration fluctuations and orbital delocalization in the topological surface state of SmB6.

17.
Sci Rep ; 7(1): 5846, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28725055

RESUMO

A pressure-induced anomalous valence crossover without structural phase transition is observed in archetypal cubic YbCu5 based heavy Fermion systems. The Yb valence is found to decrease with increasing pressure, indicating a pressure-induced crossover from a localized 4f 13 state to the valence fluctuation regime, which is not expected for Yb systems with conventional c-f hybridization. This result further highlights the remarkable singularity of the valence behavior in compressed YbCu5-based compounds. The intermetallics Yb2Pd2Sn, which shows two quantum critical points (QCP) under pressure and has been proposed as a potential candidate for a reentrant Yb2+ state at high pressure, was also studied for comparison. In this compound, the Yb valence monotonically increases with pressure, disproving a scenario of a reentrant non-magnetic Yb2+ state at the second QCP.

18.
Sci Rep ; 7(1): 3656, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28623333

RESUMO

The pressure-response of the Co-O bond lengths and the spin state of Co ions in a hybrid 3d-5d solid-state oxide Sr2Co0.5Ir0.5O4 with a layered K2NiF4-type structure was studied by using hard X-ray absorption and emission spectroscopies. The Co-K and the Ir-L 3 X-ray absorption spectra demonstrate that the Ir5+ and the Co3+ valence states at ambient conditions are not affected by pressure. The Co Kß emission spectra, on the other hand, revealed a gradual spin state transition of Co3+ ions from a high-spin (S = 2) state at ambient pressure to a complete low-spin state (S = 0) at 40 GPa without crossing the intermediate spin state (S = 1). This can be well understood from our calculated phase diagram in which we consider the energies of the low spin, intermediate spin and high spin states of Co3+ ions as a function of the anisotropic distortion of the octahedral local coordination in the layered oxide. We infer that a short in-plane Co-O bond length (<1.90 Å) as well as a very large ratio of Co-Oapex/Co-Oin-plane is needed to stabilize the IS Co3+, a situation which is rarely met in reality.

19.
J Synchrotron Radiat ; 24(Pt 1): 296-301, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28009570

RESUMO

In this study an analysis strategy towards using the resonant inelastic X-ray scattering (RIXS) technique more effectively compared with X-ray absorption spectroscopy (XAS) is presented. In particular, the question of when RIXS brings extra information compared with XAS is addressed. To answer this question the RIXS plane is analysed using two models: (i) an exciton model and (ii) a continuum model. The continuum model describes the dipole pre-edge excitations while the exciton model describes the quadrupole excitations. Applying our approach to the experimental 1s2p RIXS planes of VO2 and TiO2, it is shown that only in the case of quadrupole excitations being present is additional information gained by RIXS compared with XAS. Combining this knowledge with methods to calculate the dipole contribution in XAS measurements gives scientists the opportunity to plan more effective experiments.

20.
Sci Rep ; 6: 30946, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27499373

RESUMO

Pressure dependence of the electronic and crystal structures of KxFe2-ySe2, which has pressure-induced two superconducting domes of SC I and SC II, was investigated by x-ray emission spectroscopy and diffraction. X-ray diffraction data show that compressibility along the c-axis changes around 12 GPa, where a new superconducting phase of SC II appears. This suggests a possible tetragonal to collapsed tetragonal phase transition. X-ray emission spectroscopy data also shows the change in the electronic structure around 12 GPa. These results can be explained by the scenario that the two SC domes under pressure originate from the change of Fermi surface topology. Our results here show the pronounced increase of the density of states near the Fermi surface under pressure with a structural phase transition, which can help address our fundamental understanding for the appearance of the SC II phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...