Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microscopy (Oxf) ; 71(1): 41-49, 2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-34410409

RESUMO

The effectiveness of sparse coding for image inpainting and denoising of off-axis electron holograms was examined computationally based on hologram simulations according to considerations of two types of electron detectors, namely charge-coupled device (CCD) and direct-detection device (DDD) cameras. In this simulation, we used a simple-phase object with a phase step such as a semiconductor p-n junction and assumed that the holograms recorded by the CCD camera include shot noise, dark-current noise and read-out noise, while those recorded by the DDD camera include only shot noise. Simulated holograms with various electron doses were sparsely coded. Even though interference fringes cannot be recognized in the simulated CCD and DDD holograms when subjected to electron doses (per pixel) equal to 1 and 0.01, respectively, both the corresponding sparse-coded holograms exhibit meaningful interference fringes. We demonstrate that a combination of the DDD camera and sparse coding reduces the requisite dose used to obtain holograms to values less than one-thousandth compared with the CCD camera without image postprocessing. This combination is expected to generate lower-dose and/or higher-speed electron holography.

2.
Microscopy (Oxf) ; 70(3): 255-264, 2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-32945839

RESUMO

In this study, a noise-reduction technique for series low-dose electron holograms using tensor decomposition is demonstrated through simulation. We treated an entire dataset of the series holograms with Poisson noise as a third-order tensor, which is a stack of 2D holograms. The third-order tensor, which is decomposed into a core tensor and three factor matrices, is approximated as a lower-rank tensor using only noise-free principal components. This technique is applied to simulated holograms by assuming a p-n junction in a semiconductor sample. The peak signal-to-noise ratios of the holograms and the reconstructed phase maps have been improved significantly using tensor decomposition. Moreover, the proposed method was applied to a more practical situation of time-resolved in situ electron holography by considering a nonuniform fringe contrast and fringe drift relative to the sample. The accuracy and precision of the reconstructed phase maps were quantitatively evaluated to demonstrate its effectiveness for in situ experiments and low-dose experiments on beam-sensitive materials.

3.
Microscopy (Oxf) ; 70(1): 24-38, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33044557

RESUMO

Phase-shifting electron holography (PS-EH) is an interference transmission electron microscopy technique that accurately visualizes potential distributions in functional materials, such as semiconductors. In this paper, we briefly introduce the features of the PS-EH that overcome some of the issues facing the conventional EH based on Fourier transformation. Then, we present a high-precision PS-EH technique with multiple electron biprisms and a sample preparation technique using a cryo-focused-ion-beam, which are important techniques for the accurate phase measurement of semiconductors. We present several applications of PS-EH to demonstrate the potential in organic and inorganic semiconductors and then discuss the differences by comparing them with previous reports on the conventional EH. We show that in situ biasing PS-EH was able to observe not only electric potential distribution but also electric field and charge density at a GaAs p-n junction and clarify how local band structures, depletion layer widths and space charges changed depending on the biasing conditions. Moreover, the PS-EH clearly visualized the local potential distributions of two-dimensional electron gas layers formed at AlGaN/GaN interfaces with different Al compositions. We also report the results of our PS-EH application for organic electroluminescence multilayers and point out the significant potential changes in the layers. The proposed PS-EH enables more precise phase measurement compared to the conventional EH, and our findings introduced in this paper will contribute to the future research and development of high-performance semiconductor materials and devices.

4.
Nat Commun ; 11(1): 2824, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32499493

RESUMO

Lithium-ion transport in cathodes, anodes, solid electrolytes, and through their interfaces plays a crucial role in the electrochemical performance of solid-state lithium-ion batteries. Direct visualization of the lithium-ion dynamics at the nanoscale provides valuable insight for understanding the fundamental ion behaviour in batteries. Here, we report the dynamic changes of lithium-ion movement in a solid-state battery under charge and discharge reactions by time-resolved operando electron energy-loss spectroscopy with scanning transmission electron microscopy. Applying image denoising and super-resolution via sparse coding drastically improves the temporal and spatial resolution of lithium imaging. Dynamic observation reveals that the lithium ions in the lithium cobaltite cathode are complicatedly extracted with diffusion through the lithium cobaltite domain boundaries during charging. Even in the open-circuit state, they move inside the cathode. Operando electron energy-loss spectroscopy with sparse coding is a promising combination to visualize the ion dynamics and clarify the fundamentals of solid-state electrochemistry.

5.
Microsc Microanal ; 26(3): 429-438, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32513331

RESUMO

We broaden the applicability of sparse coding, a machine learning method, to low-dose electron holography by using simulated holograms for learning and validation processes. The holograms, with shot noise, are prepared to generate a model, or a dictionary, that includes basic features representing interference fringes. The dictionary is applied to sparse representations of other simulated holograms with various signal-to-noise ratios (SNRs). Results demonstrate that this approach successfully removes noise for holograms with an extremely small SNR of 0.10, and that the denoised holograms provide the accurate phase distribution. Furthermore, this study demonstrates that the dictionary learned from the simulated holograms can be applied to denoising of experimental holograms of a p-n junction specimen recorded with different exposure times. The results indicate that the simulation-trained sparse coding is suitable for use over a wide range of imaging conditions, in particular for observing electron beam-sensitive materials.

6.
Microscopy (Oxf) ; 69(1): 1-10, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-31711167

RESUMO

Phase-shifting electron holography (PS-EH) using a transmission electron microscope (TEM) was applied to visualize layers with different concentrations of carriers activated by Si (at dopant levels of 1019, 1018, 1017 and 1016 atoms cm-3) in n-type GaN semiconductors. To precisely measure the reconstructed phase profiles in the GaN sample, three electron biprisms were used to obtain a series of high-contrast holograms without Fresnel fringes generated by a biprism filament, and a cryo-focused-ion-beam (cryo-FIB) was used to prepare a uniform TEM sample with less distortion in the wide field of view. All layers in a 350-nm-thick TEM sample were distinguished with 1.8-nm spatial resolution and 0.02-rad phase-resolution, and variations of step width in the phase profile (corresponding to depletion width) at the interfaces between the layers were also measured. Thicknesses of the active and inactive layers at each dopant level were estimated from the observed phase profile and the simulation of theoretical band structure. Ratio of active-layer thickness to total thickness of the TEM sample significantly decreased as dopant concentration decreased; thus, a thicker TEM sample is necessary to visualize lower carrier concentrations; for example, to distinguish layers with dopant concentrations of 1016 and 1015 atoms cm-3. It was estimated that sample thickness must be more than 700 nm to make it be possible to detect sub-layers by the combination of PS-EH and cryo-FIB.

7.
Ultramicroscopy ; 206: 112818, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31382230

RESUMO

We demonstrate the effect of image denoising with sparse coding and dictionary learning algorithms for low-dose electron holography. Electron interference patterns (holograms) of a GaAs semiconductor specimen having a p-n junction were recorded with different exposure times (1, 4 and 40 s) and computer algorithms were applied to the holograms. The algorithms reduced the noise in the low-dose holograms successfully, with high data fidelity. In addition, the denoised holograms resulted in the phase images of a higher signal-to-noise ratio, fitting well to those obtained from original holograms recorded with sufficiently-long exposure times. The standard deviation in the reconstructed phase images was reduced by one digit using the denoising process. These results indicate that the sparse coding with dictionary learning algorithms are effective for electron holography and can potentially improve the temporal resolution by a factor of 40 or more without deterioration in the spatial resolution, thus enabling the observation of materials sensitive to electron beam irradiation and high-speed dynamical in situ electron holography.

8.
Angew Chem Int Ed Engl ; 58(16): 5292-5296, 2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30729632

RESUMO

When two different materials come into contact, mobile carriers redistribute at the interface according to their potential difference. Such a charge redistribution is also expected at the interface between electrodes and solid electrolytes. The redistributed ions significantly affect the ion conduction through the interface. Thus, it is essential to determine the actual distribution of the ionic carriers and their potential to improve ion conduction. We succeeded in visualizing the ionic and potential profiles in the charge redistribution layer, or space-charge layer (SCL), formed at the interface between a Cu electrode and Li-conductive solid electrolyte using phase-shifting electron holography and spatially resolved electron energy-loss spectroscopy. These electron microscopy techniques clearly showed the Li-ionic SCL, which dropped by 1.3 V within a distance of 10 nm from the interface. These techniques could contribute to the development of next-generation electrochemical devices.

9.
Microscopy (Oxf) ; 68(2): 159-166, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30452667

RESUMO

The innate electric potentials in biased p- and n-type GaAs compound semiconductors and the built-in potential were successfully measured with high accuracy and precision by applying in situ phase-shifting electron holography to a wedge-shaped GaAs specimen. A cryo-focused-ion-beam system was used to prepare the 35°-wedge-shaped specimen with smooth surfaces for a precise measurement. The specimen was biased in a transmission electron microscope, and holograms with high-contrast interference fringes were recorded for the phase-shifting method. A clear phase image around the p-n junction was reconstructed even in a thick region (thickness of ~700 nm) at a spatial resolution of 1 nm and precision of 0.01 rad. The innate electric potentials of the unbiased p- and n-type layers were measured to be 12.96 ± 0.17 V and 14.43 ± 0.19 V, respectively. The built-in potential was determined to be 1.48 ± 0.02 V. In addition, the in situ biasing measurement revealed that the measured electric-potential difference between the p and n regions changed by an amount equal to the voltage applied to the specimen, which indicates that all of the external voltage was applied to the p-n junction and that no voltage loss occurred at the other regions.

10.
Nano Lett ; 18(9): 5892-5898, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30130410

RESUMO

All-solid-state lithium-ion batteries (LIBs) are one of the promising candidates to overcome some issues of conventional LIBs with liquid electrolytes. However, high interfacial resistance of Li-ion transfer at the electrode/solid electrolyte limits their performance. Thus, it is important to clarify interfacial phenomena in a nanometer scale. Here, we present a new method to dynamically observe the Li-ion distribution and Co-ion electronic states in a LiCoO2 cathode of the all-solid-state LIB during charge and discharge reactions using operando scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS). By applying a hyperspectral image analysis of non-negative matrix factorization (NMF) to the STEM-EELS, we succeeded in clearly observing the quantitative Li-ion distribution in the operando condition. We found from the operando observation with NMF that the Li ions did not uniformly extract/insert during the charge/discharge reactions, and the activity of the electrochemical reaction depended on the Li-ion concentration in a pristine state. An electrochemically inactive region was formed about 10-20 nm near the LiCoO2/Li2O-Al2O3-TiO2-P2O5-based solid electrolyte interfaces. The STEM-EELS, electron diffraction, and Raman spectroscopy experimentally showed that the inactive region was a mixture of LiCoO2 and Co3O4, leading to the higher interfacial resistance of the Li-ion transfer because Co3O4 does not have pathways of Li-ion diffusion in its crystal.

11.
Rev Sci Instrum ; 89(4): 043105, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29716374

RESUMO

We report details of an electron-ion coincidence apparatus, which has been developed for molecular-frame electron energy loss spectroscopy studies. The apparatus is mainly composed of a pulsed electron gun, an energy-dispersive electron spectrometer, and an ion momentum imaging spectrometer. Molecular-orientation dependence of the high-energy electron scattering cross section can be examined by conducting measurements of vector correlation between the momenta of the scattered electron and fragment ion. Background due to false coincidences is significantly reduced by introducing a pulsed electron beam and pulsing scheme of ion extraction. The experimental setup has been tested by measuring the inner-shell excitation of N2 at an incident electron energy of 1.5 keV and a scattering angle of 10.2°.

12.
Microscopy (Oxf) ; 67(3): 178-186, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29635636

RESUMO

We developed a novel sample preparation method for transmission electron microscopy (TEM) to suppress superfluous electric fields leaked from biased TEM samples. In this method, a thin TEM sample is first coated with an insulating amorphous aluminum oxide (AlOx) film with a thickness of about 20 nm. Then, the sample is coated with a conductive amorphous carbon film with a thickness of about 10 nm, and the film is grounded. This technique was applied to a model sample of a metal electrode/Li-ion-conductive-solid-electrolyte/metal electrode for biasing electron holography. We found that AlOx film with a thickness of 10 nm has a large withstand voltage of about 8 V and that double layers of AlOx and carbon act as a 'nano-shield' to suppress 99% of the electric fields outside of the sample. We also found an asymmetry potential distribution between high and low potential electrodes in biased solid-electrolyte, indicating different accumulation behaviors of lithium-ions (Li+) and lithium-ion vacancies (VLi-) in the biased solid-electrolyte.

13.
Ultramicroscopy ; 176: 86-92, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28341556

RESUMO

Advanced techniques for overcoming problems encountered during in situ electron holography experiments in which a voltage is applied to an ionic conductor are reported. The three major problems encountered were 1) electric-field leakage from the specimen and its effect on phase images, 2) high electron conductivity of damage layers formed by the focused ion beam method, and 3) chemical reaction of the specimen with air. The first problem was overcome by comparing experimental phase distributions with simulated images in which three-dimensional leakage fields were taken into account, the second by removing the damage layers using a low-energy narrow Ar ion beam, and the third by developing an air-tight biasing specimen holder.

14.
Ultramicroscopy ; 178: 20-26, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27528443

RESUMO

In situ electron holography is used to observe changes of electric-potential distributions in an amorphous lithium phosphorus oxynitride (LiPON) solid-state electrolyte when different voltages are applied. 2D phase images are simulated by integrating the 3D potential distribution along the electron trajectory through a thin Cu/LiPON/Cu region. Good agreement between experimental and simulated phase distributions is obtained when the influence of the external electric field is taken into account using the 3D boundary-charge method. Based on the precise potential changes, the lithium-ion and lithium-vacancy distributions inside the LiPON layer and electric double layers (EDLs) are inferred. The gradients of the phase drops at the interfaces in relation to EDL widths are discussed.

15.
Ultramicroscopy ; 173: 64-70, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27923137

RESUMO

Advanced techniques for overcoming problems encountered during in situ electron holography experiments in which a voltage is applied to an ionic conductor are reported. The three major problems encountered were 1) electric-field leakage from the specimen and its effect on phase images, 2) high electron conductivity of damage layers formed by the focused ion beam method, and 3) chemical reaction of the specimen with air. The first problem was overcome by comparing experimental phase distributions with simulated images in which three-dimensional leakage fields were taken into account, the second by removing the damage layers using a low-energy narrow Ar ion beam, and the third by developing an air-tight biasing specimen holder.

16.
Microscopy (Oxf) ; 66(1): 50-61, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-27733434

RESUMO

All-solid-state Li-ion batteries having incombustible solid electrolytes are promising energy storage devices because they have significant advantages in terms of safety, lifetime and energy density. Electrochemical reactions, namely, Li-ion insertion/extraction reactions, commonly occur around the nanometer-scale interfaces between the electrodes and solid electrolytes. Thus, transmission electron microscopy (TEM) is an appropriate technique to directly observe such reactions, providing important information for understanding the fundamental solid-state electrochemistry and improving battery performance. In this review, we introduce two types of TEM techniques for operando observations of battery reactions, spatially resolved electron energy-loss spectroscopy in a TEM mode for direct detection of the Li concentration profiles and electron holography for observing the electric potential changes due to Li-ion insertion/extraction reactions. We visually show how Li-ion insertion/extractions affect the crystal structures, electronic structures, and local electric potential during the charge-discharge processes in these batteries.

18.
Nano Lett ; 16(9): 5409-14, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27472440

RESUMO

The ability to view directly the surface structures of battery materials with atomic resolution promises to dramatically improve our understanding of lithium (de)intercalation and related processes. Here we report the use of state-of-the-art scanning transmission electron microscopy techniques to probe the (010) surface of commercially important material LiFePO4 and compare the results with theoretical models. The surface structure is noticeably different depending on whether Li ions are present in the topmost surface layer or not. Li ions are also found to migrate back to surface regions from within the crystal relatively quickly after partial delithiation, demonstrating the facile nature of Li transport in the [010] direction. The results are consistent with phase transformation models involving metastable phase formation and relaxation, providing atomic-level insights into these fundamental processes.

19.
J Phys Chem Lett ; 7(11): 2063-7, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27195427

RESUMO

We examined the crystal structures of Li2(NixMn1-x)O3(-δ) (x = 0, 1/10, 1/6, and 1/4) to elucidate the relationship between the structure and electrochemical performance of the compounds using neutron and synchrotron X-ray powder diffraction analyses in combination. Our examination revealed that these crystals contain a large number of stacking faults and exhibit significant cation mixing in the transition-metal layers; the cation mixing becomes significant with an increase in the Ni concentration. Charge-discharge measurements showed that the replacement of Mn with Ni lowers the potential of the charge plateau and leads to higher charge-discharge capacities. From a topological point of view with regard to the atomic arrangement in the crystals, it is concluded that substituting Mn in Li2MnO3 with Ni promotes the formation of smooth Li percolation paths, thus increasing the number of active Li ions and improving the charge-discharge capacity.

20.
Microscopy (Oxf) ; 64(6): 401-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26337787

RESUMO

All-solid-state Li-ion batteries (LIBs) with solid electrolytes are expected to be the next generation devices to overcome serious issues facing conventional LIBs with liquid electrolytes. However, the large Li-ion transfer resistance at the electrode/solid-electrolyte interfaces causes low power density and prevents practical use. In-situ-formed negative electrodes prepared by decomposing the solid electrolyte Li(1+x+3z)Alx(Ti,Ge)(2-x)Si(3z)P(3-z)O12 (LASGTP) with an excess Li-ion insertion reaction are effective electrodes providing low Li-ion transfer resistance at the interfaces. Prior to our work, however, it had still been unclear how the negative electrodes were formed in the parent solid electrolytes. Here, we succeeded in dynamically visualizing the formation by in situ spatially resolved electron energy-loss spectroscopy in a transmission electron microscope mode (SR-TEM-EELS). The Li-ions were gradually inserted into the solid electrolyte region around 400 nm from the negative current-collector/solid-electrolyte interface in the charge process. Some of the ions were then extracted in the discharge process, and the rest were diffused such that the distribution was almost flat, resulting in the negative electrodes. The redox reaction of Ti(4+)/Ti(3+) in the solid electrolyte was also observed in situ during the Li insertion/extraction processes. The in situ SR-TEM-EELS revealed the mechanism of the electrochemical reaction in solid-state batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA