Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cellulose (Lond) ; 31(5): 3129-3142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577421

RESUMO

The research conducted on kraft cooking of for different chip sizes is often not representative for the industrial process since the chip size fractions were made of high-quality wood without impurities. We evaluated the effects and the potential of cooking non ideal spruce chip fractions after industrial chipping and screening. The chips were classified according to SCAN 40:01, and the respective fractions were cooked under the identical conditions to mimic the effect of a joint cooking in the industrial digester. For the undersized chips we found higher bark content, a lower screened yield, a higher Kappa number, lower fiber length and lower tensile strength. For the oversized chips, the fiber length and tensile index were also considerably lower. A lower wood quality due to high knot content in the larger fractions was found to be the reason for that. Based on the data obtained from the experiments and literature, different process options for increased yield and reduced chemical consumption are discussed, e.g., separate cooking of different chip fractions. Improved chip screening seems to be the process improvement with lowest costs and highest impact.

2.
Int J Biol Macromol ; 239: 124286, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37011749

RESUMO

Cationic polyelectrolytes (PEs) are commonly used additives in manufacturing of cellulose based products such as regenerated fibers and paper to tailor their product properties. Here we are studying the adsorption of poly(diallyldimethylammonium chloride), PD, on cellulose, using in situ surface plasmon resonance spectroscopy (SPR) measurements. We employ model surfaces from regenerated cellulose xanthate (CX) and trimethylsilyl cellulose (TMSC), mimicking industrially relevant regenerated cellulose substrates. The effects of the PDs molecular weight were strongly depending on the ionic strength and type of electrolyte (NaCl vs CaCl2). Without electrolytes, the adsorption was monolayer-type, i.e. independent of molecular weight. At moderate ionic strength, adsorption increased due to more pronounced PE coiling, while at high ionic strength electrostatic shielding strongly reduced adsorption of PDs. Results exhibited pronounced differences for the chosen substrates (cellulose regenerated from xanthate (CXreg) vs. regenerated from trimethylsilyl cellulose, TMSCreg). Consistently higher adsorbed amounts of the PD were determined on CXreg surfaces compared TMSC. This can be attributed to a more negative zeta potential, a higher AFM roughness and a higher degree of swelling (investigated by QCM-D) of the CXreg substrates.


Assuntos
Celulose , Eletrólitos , Adsorção , Peso Molecular , Propriedades de Superfície , Celulose/química , Eletrólitos/química
3.
J Colloid Interface Sci ; 640: 445-455, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36870220

RESUMO

HYPOTHESIS: The widely used Lucas-Washburn (LW) equation depends on the contact angle as the driving force for liquid penetration. However, the contact angle depends on both, the liquid and the substrate. It would be desirable to predict the penetration into porous materials, without the requirement to measure the solid-liquid interaction. Here, we propose a novel modeling approach for liquid penetration from mutually independent substrate- and liquid properties. For this purpose, the contact angle in the LW-equation is replaced by polar and dispersive surface energies, utilizing the theories of Owens-Wendt-Rabel-Kaelble (OWRK), Wu, or van Oss, Good, Chaudhury (vOGC). EXPERIMENTS: The proposed modelling approach is validated exhaustively by measuring penetration speed for 96 substrate-liquid pairings and comparing the results to model predictions based on literature- and measured data. FINDINGS: Liquid absorption is predicted very well (R2 = 0.8-0.9) with all three approaches, spanning a wide range of penetration speed, substrate- and liquid surface energy, viscosity, and pore size. The models for liquid penetration without measurement of solid-liquid interaction (contact angle) performed well. Modeling calculations are entirely relying on physical data of the solid and the liquid phase (surface energies, viscosity and pore size), which can be measured or retrieved from databases.

4.
J Mater Sci ; 57(36): 17517-17529, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213565

RESUMO

The longitudinal stiffness of cellulosic fibres plays an important role in the mechanical performance of many products these fibres are used for. Especially, the fibres' viscoelastic properties are having an influence on the product performance. In this work, tensile testing at different strain rates was performed on single fibres to investigate the rate dependence of their moduli. Four different fibre types were tested: chemi-thermomechanical softwood pulp (CTMP), bleached chemical softwood pulp (CP), unbleached softwood kraft pulp (UKP), and viscose (VIS). For each fibre sample, ten strain rates ranging from 0.113% s-1 to 800% s-1 were applied. The rate-dependent modulus E r of each fibre at each strain rate was calculated by linearly fitting the stress-strain curves. By obtaining the values of the normalized modulus, a slope value per decade was calculated to quantify the rate dependence. To exclude possible plastic and relaxation effects, two additional experiments were used: a force-controlled loading-unloading experiment and a reverse rate protocol. All cellulosic fibres tested exhibited rate-dependent behaviour with a log-linear relationship between loading rate and modulus. For each tenfold increase in loading rate we found an increase in modulus up to nearly 20%-depending on the fibre type. Viscose fibres exhibit the highest rate dependence, whereas chemical softwood pulp fibres exhibit the lowest. Supplementary Information: The online version contains supplementary material available at 10.1007/s10853-022-07722-7.

5.
Biomacromolecules ; 23(6): 2243-2254, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35549173

RESUMO

Cellulose nanocrystals (CNCs) offer excellent mechanical properties. However, measuring the strength by performing reliable experiments at the nanoscale is challenging. In this paper, we model Iß crystalline cellulose using reactive molecular dynamics simulations. Taking the fibril twist into account, structural changes and hydrogen-bonding characteristics of CNCs during the tensile test are inspected and the failure mechanism of CNCs is analyzed down to the scale of individual bonds. The C4-O4 glycosidic bond is found to be responsible for the failure of CNCs. Finally, the effect of strain rate on ultimate properties is analyzed and a nonlinear model is used to predict the ultimate strength of 9.2 GPa and ultimate strain of 8.5% at a 1 s-1 strain rate. This study sheds light on the applications of cellulose in nanocomposites and further modeling of cellulose nanofibres.


Assuntos
Nanocompostos , Nanopartículas , Celulose/química , Simulação de Dinâmica Molecular , Nanocompostos/química , Nanopartículas/química , Resistência à Tração
6.
ACS Omega ; 6(44): 29350-29359, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34778608

RESUMO

We present how harmful different wood extractives carried over to paper mill with unbleached softwood Kraft pulp are for the strength of packaging papers and boards. The investigations were done by simulating industrial papermaking conditions in laboratory-scale trials for handsheet production. It was found that fatty acids are the most relevant compounds in the carryover pitch extractives (CPEs), as they readily interfere in fiber-fiber bonding strength, control the properties of CPE micelles, and are furthermore the most abundant compounds. Addition of cationic starch improved strength and evened out the strength differences of handsheets with different CPE compounds. Oleic acid (unsaturated fatty acid) was an exception, as it was above average harmful for paper strength without cationic starch and also heavily impaired the functioning of cationic starch. As a whole, these findings demonstrate that fatty acids, especially unsaturated ones, are the most relevant CPE compounds contributing to the reduced efficiency of cationic starch and decreased strength of unbleached softwood Kraft paper. This makes the cleaning of process waters by precipitating CPEs on the pulp fibers harmful for paper strength.

7.
Sci Rep ; 11(1): 22411, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789767

RESUMO

Cellulose fibers are a major industrial input, but due to their irregular shape and anisotropic material response, accurate material characterization is difficult. Single fiber tensile testing is the most popular way to estimate the material properties of individual fibers. However, such tests can only be performed along the axis of the fiber and are associated with problems of enforcing restraints. Alternative indirect approaches, such as micro-mechanical modeling, can help but yield results that are not fully decoupled from the model assumptions. Here, we compare these methods with nanoindentation as a method to extract elastic material constants of the individual fibers. We show that both the longitudinal and the transverse elastic modulus can be determined, additionally enabling the measurement of fiber properties in-situ inside a sheet of paper such that the entire industrial process history is captured. The obtained longitudinal modulus is comparable to traditional methods for larger indents but with a strongly increased scatter as the size of the indentation is decreased further.

8.
Carbohydr Polym ; 270: 118364, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34364609

RESUMO

In this work, we study interactions of five different hemicellulose models, i.e. Galactoglucomannan, O-Acetyl-Galactoglucomannan, Fuco-Galacto-Xyloglucan, 4-O-Methylglucuronoxylan, and 4-O-Methylglucuronoarabinoxylan, and their respective binding strength to cellulose nanocrystals by molecular dynamics simulations. Glucuronoarabinoxylan showed the highest free energy of binding, whereas Xyloglucan had the lowest interaction energies amongst the five models. We further performed simulated shear tests and concluded that failure mostly happens at the inter-molecular interaction level within the hemicellulose fraction, rather than at the interface with cellulose. The presence of water molecules seems to have a weakening effect on the interactions of hemicellulose and cellulose, taking up the available hydroxyl groups on the surface of the cellulose for hydrogen bonding. We believe that these studies can shed light on better understanding of plant cell walls, as well as providing evidence on variability of the structures of different plant sources for extractions, purification, and operation of biorefineries.


Assuntos
Celulose/química , Nanopartículas/química , Polissacarídeos/química , Adsorção , Parede Celular/química , Glucanos/química , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética/métodos , Mananas/química , Simulação de Dinâmica Molecular , Resistência ao Cisalhamento , Água/química , Xilanos/química
10.
ACS Appl Mater Interfaces ; 13(16): 19521-19529, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33856765

RESUMO

Adhesion is caused by molecular interactions that only take place if the surfaces are in nanoscale contact (NSC); i.e., the distance between the surfaces is in the range of 0.1-0.4 nm. However, there are several difficulties measuring the NSC between surfaces, mainly because regions that appear to be in full contact at low magnification may show no NSC when observed at higher magnifications. Thus, the measurement area of NSC is very small with imaging techniques, and an experimental technique to evaluate NSC for large contact areas has not been available thus far. Here, we are proposing Förster resonance energy transfer (FRET) spectroscopy/microscopy for this purpose. We demonstrate that NSC in a distance range of 1-10 nm can be evaluated. Our experiments reveal that, for thin films pressed under different loads, NSC increases with the applied pressure, resulting in a higher FRET signal and a corresponding increase in adhesion force/energy when separating the films. Furthermore, we show that local variations in molecular contact can be visualized with FRET microscopy. Thus, we are introducing a spectroscopic technique for quantification (FRET spectroscopy) and imaging (FRET microscopy) of NSC between surfaces, demonstrated here for the application of surface adhesion. This could be of interest for all fields where adhesion or nanoscale surface contact are playing a role, for example, soft matter, biological materials, and polymers, but also engineering applications, like tribology, adhesives, and sealants.

11.
Sci Rep ; 11(1): 7942, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846398

RESUMO

Scientific publications and newsfeeds recently focused on flushable wet wipes and their role in sewage system blockages. It is stated that although products are marked as flushable, they do not disintegrate after being disposed of via the toilet. In this work it is shown that wetlaid hydroentangled wet wipes lose their initially good dispersive properties during their storage in wet condition. As a consequence, we are suggesting to add tests after defined times of wet storage when assessing the flushability of wet wipes. Loss of dispersibility is found for both, wet wipes from industrial production and wipes produced on pilot facilities. We found it quite surprising that the wet wipes' dispersibility is deteriorating after storage in exactly the same liquid they are dispersed in, i.e. water. This is probably why the effect of wet storage has not been investigated earlier. It is demonstrated that the deteriorating dispersibility of these wipes is linked to the used type of short cellulosic fibres - only wipes containing unbleached softwood pulp as short fibre component were preserving good dispersibility during wet storage. Possible mechanisms that might be responsible are discussed, e.g. long term fiber swelling causing a tightening of the fiber network, or surface interdiffusion.

12.
Carbohydr Polym ; 261: 117826, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33766333

RESUMO

Optical brightening agents (OBAs) are commonly used in textile and paper industry to adjust product brightness and color appearence. Continuous production processes lead to short residence time of the dyes in the fiber suspension, making it necessary to understand the kinetics of adsorption. The interaction mechanisms of OBAs with cellulose are challenging to establish as the fibrous nature of cellulosic substrates complicates acquisition of real-time data. Here, we explore the real-time adsorption of different OBAs (di, tetra- and hexasulfonated compounds) onto different cellulose surfaces using surface plasmon resonance spectroscopy. Ionic strength, surface topography and polarity were varied and yielded 0.76-11.35 mg m-2 OBA on cellulose. We identified four independent mechanisms governing OBA-cellulose interactions. These involve the polarity of the cellulose surface, the solubility of the OBA, the ionic strength during adsorption and presence of bivalent cations such as Ca2+. These results can be exploited for process optimization in related industries as they allow for a simple adjustment and experimental testing procedures including performance assessment of novel OBAs.

13.
Int J Biol Macromol ; 180: 80-87, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33722621

RESUMO

Hydrophobization of cellulosic materials and particularly paper products is a commonly used procedure to render papers more resistant to water and moisture. Here, we explore the hydrophobization of unsized paper sheets via the gas phase. We employed three different compounds, namely palmitoyl chloride (PCl), trifluoroacetic anhydride/acetic anhydride (TFAA/Ac2O)) and hexamethyldisilazane (HMDS) which were vaporized and allowed to react with the paper sheets via the gas phase. All routes yielded hydrophobic papers with static water contact angles far above 90° and indicated the formation of covalent bonds. The PCl and TFAA approach negatively impacted the mechanical and optical properties of the paper leading to a decrease in tensile strength and yellowing of the sheets. The HMDS modified papers did not exhibit any differences regarding relevant paper technological parameters (mechanical properties, optical properties, porosity) compared to the non-modified sheets. XPS studies revealed that the HMDS modified samples have a rather low silicon content, pointing at the formation of submonolayers of trimethylsilyl groups on the fiber surfaces in the paper network. This was further investigated by penetration dynamic analysis using ultrasonication, which revealed that the whole fiber network has been homogeneously modified with the silyl groups and not only the very outer surface as for the PCl and the TFAA modified papers. This procedure yields a possibility to study the influence of hydrophobicity on paper sheets and their network properties without changing structural and mechanical paper parameters.


Assuntos
Celulose/química , Papel , Água/química , Molhabilidade , Anidridos Acéticos/química , Fluoracetatos/química , Compostos de Organossilício/química , Palmitatos/química , Espectroscopia Fotoeletrônica , Porosidade , Espectrofotometria Infravermelho , Resistência à Tração , Ondas Ultrassônicas , Volatilização
14.
ACS Omega ; 5(45): 29243-29256, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33225155

RESUMO

Herein, colloidal dispersions of alkaline nanoparticles (NPs: CaCO3 and Mg(OH)2) are stabilized by trimethylsilyl cellulose (TMSC) in hexamethyldisiloxane and employed to treat historical wood pulp paper by an effortless dip-coating technique. Both alkaline NPs exhibit high stability and no size and shape changes upon stabilization with the polymer, as shown by UV-vis spectroscopy and transmission electron microscopy. The long-term effect of NP/TMSC coatings is investigated in detail using accelerated aging. The results from the pH-test and back-titration of coated papers show a complete acid neutralization (pH ∼ 7.4) and introduction of adequate alkaline reserve even after prolonged accelerated aging. Scanning electron microscopy-energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and infrared and water contact angle measurements showed the introduction of a thin and smooth hydrophobic NP/TMSC coating on the paper fibers. Acid-catalyzed desilylation of TMSC was observed by declining C-Si infrared absorbance peaks upon aging. The CaCO3 coatings are superior to Mg(OH)2 with respect to a reduced yellowing and lower cellulose degradation upon aging as shown by colorimetric measurements and degree of polymerization analysis. The tensile strength and folding endurance of coated and aged papers are improved to 200-300 and 50-70% as illustrated by tensile strength and double folding endurance measurements.

15.
Materials (Basel) ; 13(12)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560465

RESUMO

Ultrasonic liquid penetration (ULP) measurements of porous sheets have been applied for a variety of purposes ranging from determining liquid absorption dynamics to surface characterization of substrates. Interpretation of ULP results, however, is complex as the ultrasound signal can be affected by several mechanisms: (1) air being replaced by the liquid in the substrate pores, (2) air bubbles forming during penetration, and (3) structural changes of the substrate due to swelling of the substrate material. Analyzing tailored liquids and substrates in combination with contact angle measurements we are demonstrating that the characteristic shape of the ULP measurement curves can be interpreted in terms of the regime of liquid uptake. A fast and direct decline of the curve corresponds to capillary penetration, the slope of the curve indicates the penetration speed. A slow decline after a previous maximum in the signal can be related to diffusive liquid transport and swelling of the substrate material.

16.
Carbohydr Polym ; 235: 115946, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32122482

RESUMO

Atomistic modelling of cellulose has widely been investigated for years using molecular dynamics simulations. In this paper, we model Iß crystalline cellulose as well as develop a model including dislocations in between the crystal regions. The model including dislocations shows a tensile modulus of 109 GPa, 25% lower than that of the fully crystalline model (146 GPa). The change in dihedral angle preferences is analysed, and its effect on hydrogen bonding pattern is assessed. How presence of hydrogen bonds contributes to elastic properties of cellulose nano-fibrils is shown. Effect of water on the elastic modulus of fibrils is also investigated. Moreover, an illustration is given of how the tensile behaviour of fibrils is controlled by a synergy between the geometry changes occurring at the glycosidic linkage, reflected by specific torsional and glycosidic angles. These findings can be useful in further modelling of cellulosic fibrils at the atomistic and coarse-grained scales.

17.
Carbohydr Polym ; 235: 115964, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32122498

RESUMO

This review focuses on cationic starches with a low degree of substitution (<0.06) which are mainly used for production of paper-based products. After a brief introduction on starch in general, cationization pathways and importance of cationic starches in paper production, this review emphasizes on the analytical challenges from different perspectives. These include the different length scales of starches when in solution: the macromolecular level, their assembly into nm aggregates and finally hydrocolloids with hundreds of nanometers of diameter. We give an overview on the current state of the art on the analysis of such challenging samples and aim at providing a guideline for obtaining and presenting reliable analytical data.


Assuntos
Papel , Amido/análise , Cátions/análise , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
18.
PLoS One ; 15(2): e0228543, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32045426

RESUMO

Two molecules, 7-(diethylamino)coumarin-3-carbohydrazide (DCCH) and fluorescein-5-thiosemicarbazide (FTSC) were investigated in different solvents, under varying pH conditions regarding their spectroscopic properties for the usage as a Förster Resonance Energy Transfer (FRET) pair to study the molecular interaction between cellulosic surfaces. All the relevant spectroscopic properties to determine the Förster distance were measured and the performance as a FRET system was checked. From the results, it is clear that the environmental conditions need to be accurately controlled as both, but especially the FTSC dyes are sensitive to changes. For high enough concentrations positive FRET systems were observed in DMF, DMSO, H2O, THF and alkaline DMF. However due to the low quantum yield of the unmodified DCCH throughout the investigated parameter range and the strong environmental dependency of FTSC, both dyes are not preferable for being used in a FRET system for studying interaction between cellulosic surfaces.


Assuntos
Cumarínicos/química , Fluoresceínas/química , Transferência Ressonante de Energia de Fluorescência/métodos , Hidrazinas/química , Solventes/química , Análise Espectral/métodos , Transferência de Energia/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Solventes/farmacologia , Espectrometria de Fluorescência/métodos , Espectrofotometria Ultravioleta/métodos
19.
Front Chem ; 7: 251, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31041311

RESUMO

An approach for the multilayer density analysis of polysaccharide thin films at the example of cellulose is presented. In detail, a model was developed for the evaluation of the density in different layers across the thickness direction of the film. The cellulose thin film was split into a so called "roughness layer" present at the surface and a "bulk layer" attached to the substrate surface. For this approach, a combination of multi-parameter surface plasmon resonance spectroscopy (SPR) and atomic force microscopy (AFM) was employed to detect changes in the properties, such as cellulose content and density, thickness and refractive index, of the surface near layer and the bulk layer. The surface region of the films featured a much lower density than the bulk. Further, these results correlate to X-ray reflectivity studies, indicating a similar layered structure with reduced density at the surface near regions. The proposed method provides an approach to analyse density variations in thin films which can be used to study material properties and swelling behavior in different layers of the films. Limitations and challenges of the multilayer model evaluation method of cellulose thin films were discussed. This particularly involves the selection of the starting values for iteration of the layer thickness of the top layer, which was overcome by incorporation of AFM data in this study.

20.
RSC Adv ; 9(54): 31708-31719, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35527935

RESUMO

In this study, we investigated the effect of liquid viscosity and surface tension for inkjet printing on porous cellulose sheets. We used five model liquids, representing the operational field of an industrial high speed inkjet printer, as specified by Ohnesorge- and Reynolds number. Drops with 30 pl and 120 pl drop size were jetted with a commercial HSI printhead. We printed on four uncoated papers representing the most relevant grades on the market in terms of hydrophobisation and surface treatment. We are presenting a quantitative analysis of viscosity and surface tension on the print outcome, evaluating dot size, liquid penetration (print through) and surface coverage of the printed dots. The most important finding is that for liquids within the jetting window the variation of the liquid viscosity typically has a 2-3 times higher impact on the print outcome than variation of the liquid surface tension. Increased viscosity in all cases reduces dot area, liquid penetration and liquid surface coverage. Surface tension plays a smaller role for liquid spreading and penetration, except for hydrophobised substrates, where both are reduced for higher surface tension. Interestingly, higher surface tension consistently increases liquid surface coverage for all papers and drop sizes. A detailed analysis on the competing effect of dot spreading and liquid penetration is presented, in terms of viscosity, surface tension and surface coverage of the liquid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...