Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-520006

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes significant morbidity and mortality worldwide, seriously impacting not only human health but also the global economy. Furthermore, over 1 million cases of newly emerging or re-emerging viral infections, specifically dengue virus (DENV), are known to occur annually. Because no virus-specific and fully effective treatments against these and many other viruses have been approved, they continue to be responsible for large-scale epidemics and global pandemics. Thus, there is an urgent need for novel, effective therapeutic agents. Here, we identified 2-thiouridine (s2U) as a broad-spectrum antiviral nucleoside analogue that exhibited antiviral activity against SARS-CoV-2 and its variants of concern, including the Delta and Omicron variants, as well as a number of other positive-sense single-stranded RNA (ssRNA+) viruses, including DENV. s2U inhibits RNA synthesis catalyzed by viral RNA-dependent RNA polymerase, thereby reducing viral RNA replication, which improved the survival rate of mice infected with SARS-CoV-2 or DENV in our animal models. Our findings demonstrate that s2U is a potential broad-spectrum antiviral agent not only against SARS-CoV-2 and DENV but other ssRNA+ viruses.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-503115

RESUMO

SARS-CoV-2 Omicron BA.2.75 emerged in May 2022. BA.2.75 is a BA.2 descendant but is phylogenetically different from BA.5, the currently predominant BA.2 descendant. Here, we showed that the effective reproduction number of BA.2.75 is greater than that of BA.5. While the sensitivity of BA.2.75 to vaccination- and BA.1/2 breakthrough infection-induced humoral immunity was comparable to that of BA.2, the immunogenicity of BA.2.75 was different from that of BA.2 and BA.5. Three clinically-available antiviral drugs were effective against BA.2.75. BA.2.75 spike exhibited a profound higher affinity to human ACE2 than BA.2 and BA.5 spikes. The fusogenicity, growth efficiency in human alveolar epithelial cells, and intrinsic pathogenicity in hamsters of BA.2.75 were comparable to those of BA.5 but were greater than those of BA.2. Our multiscale investigations suggest that BA.2.75 acquired virological properties independently of BA.5, and the potential risk of BA.2.75 to global health is greater than that of BA.5.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-502758

RESUMO

Unremitting emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants imposes us to continuous control measurement. Given the rapid spread, new Omicron subvariant named BA.5 is urgently required for characterization. Here we analyzed BA.5 with the other Omicron variants BA.1, BA.2, and ancestral B.1.1 comprehensively. Although in vitro growth kinetics of BA.5 is comparable among the Omicron subvariants, BA.5 become much more fusogenic than BA.1 and BA.2. The airway-on-a-chip analysis showed that the ability of BA.5 to disrupt the respiratory epithelial and endothelial barriers is enhanced among Omicron subvariants. Furthermore, in our hamster model, in vivo replication of BA.5 is comparable with that of the other Omicrons and less than that of the ancestral B.1.1. Importantly, inflammatory response against BA.5 is strong compared with BA.1 and BA.2. Our data suggest that BA.5 is still low pathogenic compared to ancestral strain but evolved to induce enhanced inflammation when compared to prior Omicron subvariants.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-494897

RESUMO

The pandemic of coronavirus disease 2019 (COVID-19) has urgently necessitated the development of antiviral agents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The 3C-like protease (3CLpro) is a promising target for COVID-19 treatment. Here, we report the new class of covalent inhibitors for 3CLpro possessing chlorofluoroacetamide (CFA) as a cysteine reactive warhead. Based on the aza-peptide scaffold, we synthesized the series of CFA derivatives in enantiopure form and evaluated their biochemical efficiencies. The data revealed that 8a (YH-6) with R configuration at the CFA unit strongly blocks the SARS-CoV-2 replication in the infected cells and this potency is comparable to that of nirmatrelvir. The X-ray structural analysis shows that 8a (YH-6) forms a covalent bond with Cys145 at the catalytic center of 3CLpro. The strong antiviral activity and sufficient pharmacokinetics property of 8a (YH-6) suggest its potential as a lead compound for treatment of COVID-19.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-480335

RESUMO

Soon after the emergence and global spread of a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron lineage, BA.1 (ref1, 2), another Omicron lineage, BA.2, has initiated outcompeting BA.1. Statistical analysis shows that the effective reproduction number of BA.2 is 1.4-fold higher than that of BA.1. Neutralisation experiments show that the vaccine-induced humoral immunity fails to function against BA.2 like BA.1, and notably, the antigenicity of BA.2 is different from BA.1. Cell culture experiments show that BA.2 is more replicative in human nasal epithelial cells and more fusogenic than BA.1. Furthermore, infection experiments using hamsters show that BA.2 is more pathogenic than BA.1. Our multiscale investigations suggest that the risk of BA.2 for global health is potentially higher than that of BA.1.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-480338

RESUMO

In parallel with vaccination, oral antiviral agents are highly anticipated to act as countermeasures for the treatment of the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Oral antiviral medication demands not only high antiviral activity but also target specificity, favorable oral bioavailability, and high metabolic stability. Although a large number of compounds have been identified as potential inhibitors of SARS-CoV-2 infection in vitro, few have proven to be effective in vivo. Here, we show that oral administration of S-217622, a novel inhibitor of SARS-CoV-2 main protease (Mpro, also known as 3C-like protease), decreases viral load and ameliorates the disease severity in SARS-CoV-2-infected hamsters. S-217622 inhibited viral proliferation at low nanomolar to sub-micromolar concentrations in cells. Oral administration of S-217622 demonstrated eminent pharmacokinetic properties and accelerated recovery from acute SARS-CoV-2 infection in hamster recipients. Moreover, S-217622 exerted antiviral activity against SARS-CoV-2 variants of concern (VOCs), including the highly pathogenic Delta variant and the recently emerged Omicron variant. Overall, our study provides evidence that S-217622, an antiviral agent that is under evaluation in a phase II/III clinical trial, possesses remarkable antiviral potency and efficacy against SARS-CoV-2 and is a prospective oral therapeutic option for COVID-19.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-477782

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in millions of deaths and threatens public health and safety. Despite the rapid global spread of COVID-19 vaccines, effective oral antiviral drugs are urgently needed. Here, we describe the discovery of S-217622, the first oral non-covalent, non-peptidic SARS-CoV-2 3CL protease inhibitor clinical candidate. S-217622 was discovered via virtual screening followed by biological screening of an in-house compound library, and optimization of the hit compound using a structure-based drug-design strategy. S-217622 exhibited antiviral activity in vitro against current outbreaking SARS-CoV-2 variants and showed favorable pharmacokinetic profiles in vivo for once-daily oral dosing. Furthermore, S-217622 dose-dependently inhibited intrapulmonary replication of SARS-CoV-2 in mice, indicating that this novel non-covalent inhibitor could be a potential oral agent for treating COVID-19.

8.
Pathogens ; 10(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34684256

RESUMO

Rickettsial pathogens are amongst the emerging and re-emerging vector-borne zoonoses of public health importance. Though traditionally considered to be transmitted by ixodid ticks, the role of argasid ticks as vectors of these pathogens is increasingly being recognized. While bat-feeding (Ornithodoros faini) and chicken-feeding (Argas walkerae) argasid ticks have been shown to harbor Rickettsia pathogens in Zambia, there are currently no reports of Rickettsia infection in southern Africa from warthog-feeding (Phacochoerus africanus) soft ticks, particularly Ornithodoros moubata and Ornithodoros porcinus. Our study sought to expand on the existing knowledge on the role of soft ticks in the epidemiology of Rickettsia species through screening for Rickettsia pathogens in warthog burrow-dwelling soft ticks from two national parks in Zambia. The tick species from which Rickettsia were detected in this study were identified as Ornithodoros porcinus, and an overall minimal Rickettsia infection rate of 19.8% (32/162) was observed. All of the sequenced Rickettsia were identified as Rickettsia lusitaniae based on nucleotide sequence similarity and phylogenetic analysis of the citrate synthase (gltA) and 17kDa common antigen (htrA) genes. Utilizing all of the gltA (n = 10) and htrA (n = 12) nucleotide sequences obtained in this study, BLAST analysis showed 100% nucleotide similarity to Rickettsia lusitaniae. Phylogenetic analysis revealed that all of the Zambian gltA and htrA gene sequences could be grouped with those of Rickettsia lusitaniae obtained in various parts of the world. Our data suggest that Rickettsia lusitaniae has a wider geographic and vector range, enhancing to our understanding of Rickettsia lusitaniae epidemiology in sub-Saharan Africa.

9.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-461785

RESUMO

One of the bottlenecks in the application of basic research findings to patients is the enormous cost, time, and effort required for high-throughput screening of potential drugs for given therapeutic targets. Here we have developed LIGHTHOUSE, a graph-based deep learning approach for discovery of the hidden principles underlying the association of small-molecule compounds with target proteins. Without any 3D structural information for proteins or chemicals, LIGHTHOUSE estimates protein-compound scores that incorporate known evolutionary relations and available experimental data. It identified novel therapeutics for cancer, lifestyle-related disease, and bacterial infection. Moreover, LIGHTHOUSE predicted ethoxzolamide as a therapeutic for coronavirus disease 2019 (COVID-19), and this agent was indeed effective against alpha, beta, gamma, and delta variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that are rampant worldwide. We envision that LIGHTHOUSE will bring about a paradigm shift in translational medicine, providing a bridge from bench side to bedside.

10.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-442060

RESUMO

Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) possesses a discriminative polybasic cleavage motif in its spike protein that is recognized by host furin protease. Proteolytic cleavage activates the spike protein and influences both the cellular entry pathway and cell tropism of SARS-CoV-2. Here, we investigated the impact of the furin cleavage site on viral growth and pathogensis using a hamster animal model infected with SARS-CoV-2 variants bearing mutations at the furin cleavage site (S gene mutants). In the airway tissues of hamsters, the S gene mutants exhibited a low growth property. In contrast to parental pathogenic SARS-CoV-2, hamsters infected with the S gene mutants showed no body weight loss and only a mild inflammatory response, indicating the attenuated variant nature of S gene mutants. We reproduced the attenuated growth of S gene mutants in primary differenciated human airway epithelial cells. This transient infection was enough to induce protective neutralizing antibodies crossreacting with different SARS-CoV-2 lineages. Consequently, hamsters inoculated with S gene mutants showed resistance to subsequent infection with both the parental strain and the currently emerging SARS-CoV-2 variants belonging to lineages B.1.1.7 and P.1. Together, our findings revealed that the loss of the furin cleavage site causes attenuation in the airway tissues of SARS-CoV-2 and highlights the potential benefits of S gene mutants as potential immunogens.

11.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-439300

RESUMO

The COVID-19 pandemic caused by the novel coronavirus, SARS-CoV-2, has a global impact on public health. Since glycosylation of the viral envelope glycoproteins is known to be deeply associated with their immunogenicity, intensive studies on the glycans of its major glycoprotein, S protein, have been conducted. Nevertheless, the detailed site-specific glycan compositions of virion-associated S protein have not yet been clarified. Here, we conducted intensive glycoproteomic analyses of SARS-CoV-2 S protein using a combinatorial approach with two different technologies: mass spectrometry (MS) and lectin microarray. Using our unique MS1-based glycoproteomic technique, Glyco-RIDGE, in addition to MS2-based Byonic search, we identified 1,759 site-specific glycan compositions. The most frequent was HexNAc:Hex:Fuc:NeuAc:NeuGc = 6:6:1:0:0, suggesting a tri-antennary N-glycan terminating with LacNAc and having bisecting GlcNAc and a core fucose, which was found in 20 of 22 glycosylated sites. The subsequent lectin microarray analysis emphasized intensive outer arm fucosylation of glycans, which efficiently complemented the glycoproteomic features. The present results illustrate the high-resolution glycoproteomic features of SARS-CoV-2 S protein and significantly contribute to vaccine design, as well as the understanding of viral protein synthesis.

12.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-271163

RESUMO

The spike (S) protein of Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) binds to a host cell receptor which facilitates viral entry. A polybasic motif detected at the cleavage site of the S protein has been shown to broaden the cell tropism and transmissibility of the virus. Here we examine the properties of SARS-CoV-2 variants with mutations at the S protein cleavage site that undergo inefficient proteolytic cleavage. Virus variants with S gene mutations generated smaller plaques and exhibited a more limited range of cell tropism compared to the wild-type strain. These alterations were shown to result from their inability to utilize the entry pathway involving direct fusion mediated by the host type II transmembrane serine protease, TMPRSS2. Notably, viruses with S gene mutations emerged rapidly and became the dominant SARS-CoV-2 variants in TMPRSS2-deficient cells including Vero cells. Our study demonstrated that the S protein polybasic cleavage motif is a critical factor underlying SARS-CoV-2 entry and cell tropism. As such, researchers should be alert to the possibility of de novo S gene mutations emerging in tissue-culture propagated virus strains.

13.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-332000

RESUMO

Information security and assurance are an increasingly critical issue in health research. Whether health research be in genetics, new drugs, disease outbreaks, biochemistry, or effects of radiation, it deals with information that is highly sensitive and which could be targeted by rogue individuals or groups, corporations, national intelligence agencies, or terrorists, looking for financial, social, or political gains. The advents of the Internet and advances in recent information technologies have also dramatically increased opportunities for attackers to exploit sensitive and valuable information.Government agencies have deployed legislative measures to protect the privacy of health information and developed information security guidelines for epidemiological studies. However, risks are grossly underestimated and little effort has been made to strategically and comprehensively protect health research information by institutions, governments and international communities.There is a need to enforce a set of proactive measures to protect health research information locally and globally. Such measures should be deployed at all levels but will be successful only if research communities collaborate actively, governments enforce appropriate legislative measures at national level, and the international community develops quality standards, concluding treaties if necessary, at the global level.Proactive measures for the best information security and assurance would be achieved through rigorous management process with a cycle of "plan, do, check, and act". Each health research entity, such as hospitals, universities, institutions, or laboratories, should implement this cycle and establish an authoritative security and assurance organization, program and plan coordinated by a designatedChief Security Officer who will ensure implementation of the above process, putting appropriate security controls in place, with key focus areas such aspolicies and best practices, enforcement and certification, risk assessment and audit, monitoring and incident response, awareness and training, and modern protection method and architecture. Governments should enforce a comprehensive scheme, and international health research communities should adopt standardized innovative methods and approaches.

14.
Artigo em Japonês | WPRIM (Pacífico Ocidental) | ID: wpr-361421

RESUMO

Information security and assurance are an increasingly critical issue in health research. Whether health research be in genetics, new drugs, disease outbreaks, biochemistry, or effects of radiation, it deals with information that is highly sensitive and which could be targeted by rogue individuals or groups, corporations, national intelligence agencies, or terrorists, looking for financial, social, or political gains. The advents of the Internet and advances in recent information technologies have also dramatically increased opportunities for attackers to exploit sensitive and valuable information. Government agencies have deployed legislative measures to protect the privacy of health information and developed information security guidelines for epidemiological studies. However, risks are grossly underestimated and little effort has been made to strategically and comprehensively protect health research information by institutions, governments and international communities. There is a need to enforce a set of proactive measures to protect health research information locally and globally. Such measures should be deployed at all levels but will be successful only if research communities collaborate actively, governments enforce appropriate legislative measures at national level, and the international community develops quality standards, concluding treaties if necessary, at the global level. Proactive measures for the best information security and assurance would be achieved through rigorous management process with a cycle of “plan, do, check, and act”. Each health research entity, such as hospitals, universities, institutions, or laboratories, should implement this cycle and establish an authoritative security and assurance organization, program and plan coordinated by a designated Chief Security Officer who will ensure implementation of the above process, putting appropriate security controls in place, with key focus areas such as policies and best practices, enforcement and certification, risk assessment and audit, monitoring and incident response, awareness and training, and modern protection method and architecture. Governments should enforce a comprehensive scheme, and international health research communities should adopt standardized innovative methods and approaches.


Assuntos
Pesquisa , Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA