Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-506117

RESUMO

The immune response to SARS-CoV-2 for patients with altered immunity such as hematologic malignancies and autoimmune disease may differ substantially from that in general population. These patients remain at high risk despite wide-spread adoption of vaccination. It is critical to examine the differences at the systems level between the general population and the patients with altered immunity in terms of immunologic and serological responses to COVID-19 infection and vaccination. Here, we developed a novel microfluidic chip for high-plex immuno-serological assay to simultaneously measure up to 50 plasma or serum samples for up to 50 soluble markers including 35 plasma proteins, 11 anti-spike/RBD IgG antibodies spanning all major variants, and controls. Our assay demonstrated the quintuplicate test in a single run with high throughput, low sample volume input, high reproducibility and high accuracy. It was applied to the measurement of 1,012 blood samples including in-depth analysis of sera from 127 patients and 21 healthy donors over multiple time points, either with acute COVID infection or vaccination. The protein association matrix analysis revealed distinct immune mediator protein modules that exhibited a reduced degree of diversity in protein-protein cooperation in patients with hematologic malignancies and patients with autoimmune disorders receiving B cell depletion therapy. Serological analysis identified that COVID infected patients with hematologic malignancies display impaired anti-RBD antibody response despite high level of anti-spike IgG, which could be associated with limited clonotype diversity and functional deficiency in B cells and was further confirmed by single-cell BCR and transcriptome sequencing. These findings underscore the importance to individualize immunization strategy for these high-risk patients and provide an informative tool to monitor their responses at the systems level.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-486788

RESUMO

We present spatial-CITE-seq for high-plex protein and whole transcriptome co-mapping, which was firstly demonstrated for profiling 189 proteins and transcriptome in multiple mouse tissue types. It was then applied to human tissues to measure 273 proteins and transcriptome that revealed spatially distinct germinal center reaction in tonsil and early immune activation in skin at the COVID-19 mRNA vaccine injection site. Spatial-CITE-seq may find a range of applications in biomedical research.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21253527

RESUMO

A dysregulated immune response against coronavirus-2 (SARS-CoV-2) plays a critical role in the outcome of patients with coronavirus disease 2019 (COVID-19). A significant increase in circulating plasmablasts is characteristic of COVID-19 though the underlying mechanisms and its prognostic implications are not known. Here, we demonstrate that in the acute phase of COVID-19, activated PD-1highCXCR5-CD4+ T cells, peripheral helper T cells, (Tph) are significantly increased and promote inflammatory tissue-homing plasmablasts in patients with stable but not severe COVID-19. Analysis of scRNA-seq data revealed that plasmablasts in stable patients express higher levels of tissue-homing receptors including CXCR3. The increased Tph cells exhibited "B cell help" signatures similar to that of circulating T follicular helper (cTfh) cells and promoted B cell differentiation in vitro. Compared with cTfh cells, Tph cells produced more IFN{gamma}, inducing tissue-homing chemokine receptors on plasmablasts. Finally, expansion of activated Tph cells was correlated with the frequency of CXCR3+ plasmablasts in the acute phase of patients with stable disease. Our results demonstrate a novel role for Tph cells in acute viral immunity by inducing ectopic, antibody secreting plasmablasts.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20241364

RESUMO

Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening post-infectious complication occurring unpredictably weeks after mild or asymptomatic SARS-CoV2 infection in otherwise healthy children. Here, we define immune abnormalities in MIS-C compared to adult COVID-19 and pediatric/adult healthy controls using single-cell RNA sequencing, antigen receptor repertoire analysis, unbiased serum proteomics, and in vitro assays. Despite no evidence of active infection, we uncover elevated S100A-family alarmins in myeloid cells and marked enrichment of serum proteins that map to myeloid cells and pathways including cytokines, complement/coagulation, and fluid shear stress in MIS-C patients. Moreover, NK and CD8 T cell cytotoxicity genes are elevated, and plasmablasts harboring IgG1 and IgG3 are expanded. Consistently, we detect elevated binding of serum IgG from severe MIS-C patients to activated human cardiac microvascular endothelial cells in culture. Thus, we define immunopathology features of MIS-C with implications for predicting and managing this SARS-CoV2-induced critical illness in children.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20153437

RESUMO

A dysregulated immune response against the SARS-CoV-2 virus plays a critical role in severe COVID-19. However, the molecular and cellular mechanisms by which the virus causes lethal immunopathology are poorly understood. Here, we utilize multiomics single-cell analysis to probe dynamic immune responses in patients with stable or progressive manifestations of COVID-19, and assess the effects of tocilizumab, an anti-IL-6 receptor monoclonal antibody. Coordinated profiling of gene expression and cell lineage protein markers reveals a prominent type-1 interferon response across all immune cells, especially in progressive patients. An anti-inflammatory innate immune response and a pre-exhaustion phenotype in activated T cells are hallmarks of progressive disease. Skewed T cell receptor repertoires in CD8+ T cells and uniquely enriched V(D)J sequences are also identified in COVID-19 patients. B cell repertoire and somatic hypermutation analysis are consistent with a primary immune response, with possible contribution from memory B cells. Our in-depth immune profiling reveals dyssynchrony of the innate and adaptive immune interaction in progressive COVID-19, which may contribute to delayed virus clearance and has implications for therapeutic intervention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...