Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(6): 3615-3623, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36749116

RESUMO

Two polyaspartates bearing ortho-fluorinated azobenzenes (pFAB) as photo-responsive groups in the side chain were synthesized: PpFABLA (1) and co-polyaspartate PpFABLA-co-PBLA [11, 75%(n/n) PpFABLA content]. As a consequence of the E/Z-isomerization of the side chain, PpFABLA (1) undergoes a visible-light-induced reversible coil-helix transition in solution: Green light (525 nm) affords the coil, and violet light (400 nm) affords the helix. pFAB significantly increases the thermal stability of the Z-isomer at 20 °C (t1/2 = 66 d for the Z-isomer) and effectively counters the favored back formation of the helix. At 20%(w/w) polymer concentration, the helical polymer forms a lyotropic liquid crystal (LLC) that further orients unidirectionally inside a magnetic field, while the coil polymer results in an isotropic solution. The high viscosity of the polymer solution stabilizes the coexistence of liquid crystalline and isotropic domains, which were obtained with spatial control by partial light irradiation. When used as an alignment medium, PpFABLA (1) enables (i) the measurement of dipolar couplings without the need for a separate isotropic reference and (ii) the differentiation of enantiomers. PpFABLA-co-PBLA (11) preserves the helical structure, by intention, independently of the E/Z-isomerization of the side chain: Both photo-isomers of PpFABLA-co-PBLA (11) form a helix that─at a concentration of 16%(w/w)─form an LLC. Despite the absence of a change in the secondary structure, the E/Z-isomerization of the side chain changes the morphology of the liquid crystal and leads to different sets of dipolar coupling for the same probe molecule.

2.
Magn Reson Chem ; 60(6): 563-571, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35266585

RESUMO

A supramolecular, lyotropic liquid crystalline alignment medium based on an azobenzene-containing 1,3,5-benzenetricarboxamide (BTA) building block is described and investigated. As we demonstrate, this water-based system is suitable for the investigation of various water-soluble analytes and allows for a scaling of alignment strength through variation of temperature. Additionally, alignment is shown to reversibly collapse above a certain temperature, yielding an isotropic solution. This collapse allows for isotropic reference measurements, which are typically needed in addition to those in an anisotropic environment, to be performed using the same sample just by varying the temperature. The medium described thus provides easy access to anisotropic NMR observables and simplifies structure elucidation techniques based thereon.


Assuntos
Cristais Líquidos , Água , Compostos Azo , Cristais Líquidos/química , Espectroscopia de Ressonância Magnética/métodos
3.
Angew Chem Int Ed Engl ; 60(38): 21040-21046, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34259370

RESUMO

The application of anisotropic parameters in NMR-spectroscopy enables the acquisition of spatial and angular information, complementary to those from conventional isotropic NMR-measurements. The use of alignment media is a well-established method for inducing anisotropy. PBPMLG is a recently discovered polyglutamate-based alignment medium, exhibiting thermoresponsive behavior in the lyotropic liquid crystalline (LLC) phase, thus offering potential for deeper understanding of the alignment process. We present one approach for investigating the thermoresponsive behavior by synthesizing specifically deuterated PBPMLG-isotopologues and their subsequent analyses using 2 H NMR-spectroscopy. It was possible to relate the observed thermoresponsive behavior to a flip of the polymer with respect to the external magnetic field-an effect never observed before in glutamate-based polymeric alignment media. Furthermore, a solvent-induced temperature dependent gelation was verified in THF, which might provide yet another opportunity to manipulate the properties of this alignment medium in the future.

4.
Soft Matter ; 17(10): 2849-2856, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33585845

RESUMO

Circular dichroism (CD) spectroscopy is commonly used for investigation of the secondary structure of biomolecular compounds as well as polymers in isotropic solution. In anisotropic solution, the usage of the apparent CD is prone to misinterpretations due to artefacts from contributions of e.g. linear dichroism (LD). Herein, a method for the complete cancelation of anisotropic artefacts in the apparent CD is developed and its validity proven. The approach is further used for investigation of the conformation and the lyotropic liquid crystalline (LLC) structure of a copolyaspartate. For this system, a temperature-dependent change of the polymer's helical conformation (helix reversal) is known. Furthermore, a rotation of the aligned polymer helices inside a magnetic field (helix realignment) is independently present, occurring at a lower temperature compared to the helix reversal. In the current study, the helix reversal is confirmed and found to be accompanied by a change of the LLC structure. A cholesteric structure is detected and revealed to change its sense (cholesteric reversal) at the temperature at which the helix realigns in the magnetic field. The determination of the cholesteric sense is enabled by measuring the induced CD of an achiral dye, dissolved in the anisotropic polymer solution. Investigation of the anisotropic polymer solution is, thus, only made possible by cancellation of the aforementioned anisotropic artefacts. This allows the observation of changes of the liquid crystal structure from right-handed cholesteric, through left-handed cholesteric, to nematic with increasing temperature.


Assuntos
Artefatos , Peptídeos , Dicroísmo Circular , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA