Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Nat Metab ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693320

RESUMO

Subcutaneous white adipose tissue (scWAT) is a dynamic storage and secretory organ that regulates systemic homeostasis, yet the impact of endurance exercise training (ExT) and sex on its molecular landscape is not fully established. Utilizing an integrative multi-omics approach, and leveraging data generated by the Molecular Transducers of Physical Activity Consortium (MoTrPAC), we show profound sexual dimorphism in the scWAT of sedentary rats and in the dynamic response of this tissue to ExT. Specifically, the scWAT of sedentary females displays -omic signatures related to insulin signaling and adipogenesis, whereas the scWAT of sedentary males is enriched in terms related to aerobic metabolism. These sex-specific -omic signatures are preserved or amplified with ExT. Integration of multi-omic analyses with phenotypic measures identifies molecular hubs predicted to drive sexually distinct responses to training. Overall, this study underscores the powerful impact of sex on adipose tissue biology and provides a rich resource to investigate the scWAT response to ExT.

2.
bioRxiv ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37905018

RESUMO

Exercise training and cold exposure both improve systemic metabolism, but the mechanisms are not well-established. We tested the hypothesis that adaptations to inguinal white adipose tissue (iWAT) are critical for these beneficial effects by determining the impact of exercise-trained and cold-exposed iWAT on systemic glucose metabolism and the iWAT proteome and secretome. Transplanting trained iWAT into sedentary mice improved glucose tolerance, while cold-exposed iWAT transplantation showed no such benefit. Compared to training, cold led to more pronounced alterations in the iWAT proteome and secretome, downregulating >2,000 proteins but also boosting iWAT's thermogenic capacity. In contrast, only training increased extracellular space and vesicle transport proteins, and only training upregulated proteins that correlate with favorable fasting glucose, suggesting fundamental changes in trained iWAT that mediate tissue-to-tissue communication. This study defines the unique exercise training- and cold exposure-induced iWAT proteomes, revealing distinct mechanisms for the beneficial effects of these interventions on metabolic health.

3.
iScience ; 26(7): 107226, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37485354

RESUMO

Physical activity is important for type 2 diabetes treatment, yet the underlying mechanisms for these beneficial effects of exercise are not fully understood. Here, we investigated the effects of exercise training on biphasic ß-cell insulin secretory function, a key factor regulating blood glucose. Adults with type 2 diabetes (7F/3M, age 49 ± 5 years, BMI 30 ± 3 kg/m2) completed a 10-week moderate-intensity exercise program and multiple components of glucose homeostasis were measured. Training improved glycemic control, insulin sensitivity, and processing of proinsulin-to-insulin. Training increased late phase ß-cell function by 38% (p = 0.01), which was correlated with changes in VO2peak suggesting training response-dependent effects. Ras-Responsive Element Binding Protein 1 (RREB1) concentrations, a protein postulated to increase type 2 diabetes risk, were inversely correlated with increases in training-induced late-phase disposition index, consistent with an inhibitory role of RREB1 on insulin secretion. Moderate-intensity exercise training improves late-phase ß-cell function and glycemic control in adults with type 2 diabetes.

4.
Cell Rep ; 42(4): 112392, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37058410

RESUMO

Inguinal white adipose tissue (iWAT) is essential for the beneficial effects of exercise training on metabolic health. The underlying mechanisms for these effects are not fully understood, and here, we test the hypothesis that exercise training results in a more favorable iWAT structural phenotype. Using biochemical, imaging, and multi-omics analyses, we find that 11 days of wheel running in male mice causes profound iWAT remodeling including decreased extracellular matrix (ECM) deposition and increased vascularization and innervation. We identify adipose stem cells as one of the main contributors to training-induced ECM remodeling, show that the PRDM16 transcriptional complex is necessary for iWAT remodeling and beiging, and discover neuronal growth regulator 1 (NEGR1) as a link between PRDM16 and neuritogenesis. Moreover, we find that training causes a shift from hypertrophic to insulin-sensitive adipocyte subpopulations. Exercise training leads to remarkable adaptations to iWAT structure and cell-type composition that can confer beneficial changes in tissue metabolism.


Assuntos
Tecido Adiposo Branco , Atividade Motora , Masculino , Camundongos , Animais , Tecido Adiposo Branco/metabolismo , Adaptação Fisiológica/fisiologia , Aclimatação/fisiologia , Fatores de Transcrição/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo/metabolismo , Camundongos Endogâmicos C57BL , Moléculas de Adesão Celular Neuronais/metabolismo
5.
Cell Metab ; 34(10): 1578-1593.e6, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36198295

RESUMO

Exercise training is critical for the prevention and treatment of obesity, but its underlying mechanisms remain incompletely understood given the challenge of profiling heterogeneous effects across multiple tissues and cell types. Here, we address this challenge and opposing effects of exercise and high-fat diet (HFD)-induced obesity at single-cell resolution in subcutaneous and visceral white adipose tissue and skeletal muscle in mice with diet and exercise training interventions. We identify a prominent role of mesenchymal stem cells (MSCs) in obesity and exercise-induced tissue adaptation. Among the pathways regulated by exercise and HFD in MSCs across the three tissues, extracellular matrix remodeling and circadian rhythm are the most prominent. Inferred cell-cell interactions implicate within- and multi-tissue crosstalk centered around MSCs. Overall, our work reveals the intricacies and diversity of multi-tissue molecular responses to exercise and obesity and uncovers a previously underappreciated role of MSCs in tissue-specific and multi-tissue beneficial effects of exercise.


Assuntos
Tecido Adiposo , Células-Tronco Mesenquimais , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Obesidade/metabolismo
6.
Diabetes ; 71(10): 2094-2105, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35838316

RESUMO

That maternal and paternal exercise improve the metabolic health of adult offspring is well established. Tissue and serum metabolites play a fundamental role in the health of an organism, but how parental exercise affects offspring tissue and serum metabolites has not yet been investigated. Here, male and female breeders were fed a high-fat diet and housed with or without running wheels before breeding (males) and before and during gestation (females). Offspring were sedentary and chow fed, with parents as follows: sedentary (Sed), maternal exercise (MatEx), paternal exercise (PatEx), or maternal+paternal exercise (Mat+PatEx). Adult offspring from all parental exercise groups had similar improvement in glucose tolerance and hepatic glucose production. Targeted metabolomics was performed in offspring serum, liver, and triceps muscle. Offspring from MatEx, PatEx, and Mat+PatEx each had a unique tissue metabolite signature, but Mat+PatEx offspring had an additive phenotype relative to MatEx or PatEx alone in a subset of liver and muscle metabolites. Tissue metabolites consistently indicated that the metabolites altered with parental exercise contribute to enhanced fatty acid oxidation. These data identify distinct tissue-specific adaptations and mechanisms for parental exercise-induced improvement in offspring metabolic health. Further mining of this data set could aid the development of novel therapeutic targets to combat metabolic diseases.


Assuntos
Dieta Hiperlipídica , Condicionamento Físico Animal , Animais , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos , Feminino , Glucose/metabolismo , Fígado/metabolismo , Masculino , Condicionamento Físico Animal/fisiologia
7.
Mol Metab ; 60: 101490, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35398278

RESUMO

OBJECTIVE: A major factor in the growing world-wide epidemic of obesity and type 2 diabetes is the increased risk of transmission of metabolic disease from obese mothers to both first (F1) and second (F2) generation offspring. Fortunately, recent pre-clinical studies demonstrate that exercise before and during pregnancy improves F1 metabolic health, providing a potential means to disrupt this cycle of disease. Whether the beneficial effects of maternal exercise can also be transmitted to the F2 generation has not been investigated. METHODS: C57BL/6 female mice were fed a chow or high-fat diet (HFD) and housed in individual cages with or without running wheels for 2 wks before breeding and during gestation. Male F1 offspring were sedentary and chow-fed, and at 8-weeks of age were bred with age-matched females from untreated parents. This resulted in 4 F2 groups based on grandmaternal treatment: chow sedentary; chow trained; HFD sedentary; HFD trained. F2 were sedentary and chow-fed and studied up to 52-weeks of age. RESULTS: We find that grandmaternal exercise improves glucose tolerance and decreases fat mass in adult F2 males and females, in the absence of any treatment intervention of the F1 after birth. Grandmaternal exercise also improves F2 liver metabolic function, including favorable effects on gene and miRNA expression, triglyceride concentrations and hepatocyte glucose production. CONCLUSION: Grandmaternal exercise has beneficial effects on the metabolic health of grandoffspring, demonstrating an important means by which exercise during pregnancy could help reduce the worldwide incidence of obesity and type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Efeitos Tardios da Exposição Pré-Natal , Animais , Diabetes Mellitus Tipo 2/complicações , Feminino , Glucose/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo
8.
Diabetes ; 71(6): 1170-1181, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35290440

RESUMO

Preclinical studies reveal maternal exercise as a promising intervention to reduce the transmission of multigenerational metabolic dysfunction caused by maternal obesity. The benefits of maternal exercise on offspring health may arise from multiple factors and have recently been shown to involve DNA demethylation of critical hepatic genes leading to enhanced glucose metabolism in offspring. Histone modification is another epigenetic regulator, yet the effects of maternal obesity and exercise on histone methylation in offspring are not known. Here, we find that maternal high-fat diet (HFD; 60% kcal from fat) induced dysregulation of offspring liver glucose metabolism in C57BL/6 mice through a mechanism involving increased reactive oxygen species, WD repeat-containing 82 (WDR82) carbonylation, and inactivation of histone H3 lysine 4 (H3K4) methyltransferase leading to decreased H3K4me3 at the promoters of glucose metabolic genes. Remarkably, the entire signal was restored if the HFD-fed dams had exercised during pregnancy. WDR82 overexpression in hepatoblasts mimicked the effects of maternal exercise on H3K4me3 levels. Placental superoxide dismutase 3 (SOD3), but not antioxidant treatment with N-acetylcysteine was necessary for the regulation of H3K4me3, gene expression, and glucose metabolism. Maternal exercise regulates a multicomponent epigenetic system in the fetal liver resulting in the transmission of the benefits of exercise to offspring.


Assuntos
Obesidade Materna , Efeitos Tardios da Exposição Pré-Natal , Animais , Proteínas Cromossômicas não Histona/metabolismo , Dieta Hiperlipídica , Feminino , Glucose/metabolismo , Histonas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Placenta/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
9.
Mol Metab ; 51: 101226, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33812060

RESUMO

OBJECTIVE: MicroRNAs (miRNA) are known to regulate the expression of genes involved in several physiological processes including metabolism, mitochondrial biogenesis, proliferation, differentiation, and cell death. METHODS: Using "in silico" analyses, we identified 219 unique miRNAs that potentially bind to the 3'UTR region of a critical mitochondrial regulator, the peroxisome proliferator-activated receptor gamma coactivator (PGC) 1 alpha (Pgc1α). Of the 219 candidate miRNAs, miR-696 had one of the highest interactions at the 3'UTR of Pgc1α, suggesting that miR-696 may be involved in the regulation of Pgc1α. RESULTS: Consistent with this hypothesis, we found that miR-696 was highly expressed in the skeletal muscle of STZ-induced diabetic mice and chronic high-fat-fed mice. C2C12 muscle cells exposed to palmitic acid also exhibited a higher expression of miR-696. This increased expression corresponded with a reduced expression of oxidative metabolism genes and reduced mitochondrial respiration. Importantly, reducing miR-696 reversed decreases in mitochondrial activity in response to palmitic acid. Using C2C12 cells treated with the AMP-activated protein kinase (AMPK) activator AICAR and skeletal muscle from AMPKα2 dominant-negative (DN) mice, we found that the signaling mechanism regulating miR-696 did not involve AMPK. In contrast, overexpression of SNF1-AMPK-related kinase (SNARK) in C2C12 cells increased miR-696 transcription while knockdown of SNARK significantly decreased miR-696. Moreover, muscle-specific transgenic mice overexpressing SNARK exhibited a lower expression of Pgc1α, elevated levels of miR-696, and reduced amounts of spontaneous activity. CONCLUSIONS: Our findings demonstrate that metabolic stress increases miR-696 expression in skeletal muscle cells, which in turn inhibits Pgc1α, reducing mitochondrial function. SNARK plays a role in this process as a metabolic stress signaling molecule inducing the expression of miR-696.


Assuntos
Diabetes Mellitus Experimental/patologia , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Proteínas Serina-Treonina Quinases/metabolismo , Regiões 3' não Traduzidas , Adenilato Quinase/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica/efeitos adversos , Regulação para Baixo , Técnicas de Silenciamento de Genes , Humanos , Masculino , Redes e Vias Metabólicas/genética , Camundongos , Camundongos Transgênicos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Proteínas Serina-Treonina Quinases/genética , Estreptozocina/administração & dosagem , Estreptozocina/toxicidade
10.
Cell Metab ; 33(5): 939-956.e8, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33770509

RESUMO

Poor maternal diet increases the risk of obesity and type 2 diabetes in offspring, adding to the ever-increasing prevalence of these diseases. In contrast, we find that maternal exercise improves the metabolic health of offspring, and here, we demonstrate that this occurs through a vitamin D receptor-mediated increase in placental superoxide dismutase 3 (SOD3) expression and secretion. SOD3 activates an AMPK/TET signaling axis in fetal offspring liver, resulting in DNA demethylation at the promoters of glucose metabolic genes, enhancing liver function, and improving glucose tolerance. In humans, SOD3 is upregulated in serum and placenta from physically active pregnant women. The discovery of maternal exercise-induced cross talk between placenta-derived SOD3 and offspring liver provides a central mechanism for improved offspring metabolic health. These findings may lead to novel therapeutic approaches to limit the transmission of metabolic disease to the next generation.


Assuntos
Exercício Físico , Placenta/metabolismo , Superóxido Dismutase/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Células Cultivadas , Desmetilação do DNA , Dieta Hiperlipídica , Feminino , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Gravidez , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores de Calcitriol/metabolismo , Transdução de Sinais , Superóxido Dismutase/genética
11.
Diabetes ; 70(6): 1250-1264, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33563587

RESUMO

Recent studies demonstrate that adaptations to white adipose tissue (WAT) are important components of the beneficial effects of exercise training on metabolic health. Exercise training favorably alters the phenotype of subcutaneous inguinal WAT (iWAT) in male mice, including decreasing fat mass, improving mitochondrial function, inducing beiging, and stimulating the secretion of adipokines. In this study, we find that despite performing more voluntary wheel running compared with males, these adaptations do not occur in the iWAT of female mice. Consistent with sex-specific adaptations, we report that mRNA expression of androgen receptor coactivators is upregulated in iWAT from trained male mice and that testosterone treatment of primary adipocytes derived from the iWAT of male, but not female mice, phenocopies exercise-induced metabolic adaptations. Sex specificity also occurs in the secretome profile, as we identify cysteine-rich secretory protein 1 (Crisp1) as a novel adipokine that is only secreted from male iWAT in response to exercise. Crisp1 expression is upregulated by testosterone and functions to increase glucose and fatty acid uptake. Our finding that adaptations to iWAT with exercise training are dramatically greater in male mice has potential clinical implications for understanding the different metabolic response to exercise training in males and females and demonstrates the importance of investigating both sexes in studies of adipose tissue biology.


Assuntos
Adaptação Fisiológica/fisiologia , Tecido Adiposo Branco/fisiologia , Condicionamento Físico Animal/fisiologia , Tecido Adiposo Bege/fisiologia , Animais , Transdiferenciação Celular , Células Cultivadas , Feminino , Canal Inguinal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Caracteres Sexuais , Gordura Subcutânea Abdominal/fisiologia
12.
Mol Metab ; 39: 101012, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32408015

RESUMO

OBJECTIVE: We tested the hypothesis that exercise training would attenuate metabolic impairment in a model of severe cancer cachexia. METHODS: We used multiple in vivo and in vitro methods to explore the mechanisms underlying the beneficial effects induced by exercise training in tumor-bearing rats. RESULTS: Exercise training improved running capacity, prolonged lifespan, reduced oxidative stress, and normalized muscle mass and contractile function in tumor-bearing rats. An unbiased proteomic screening revealed COP9 signalosome complex subunit 2 (COPS2) as one of the most downregulated proteins in skeletal muscle at the early stage of cancer cachexia. Exercise training normalized muscle COPS2 protein expression in tumor-bearing rats and mice. Lung cancer patients with low endurance capacity had low muscle COPS2 protein expression as compared to age-matched control subjects. To test whether decrease in COPS2 protein levels could aggravate or be an intrinsic compensatory mechanism to protect myotubes from cancer effects, we performed experiments in vitro using primary myotubes. COPS2 knockdown in human myotubes affected multiple cellular pathways, including regulation of actin cytoskeleton. Incubation of cancer-conditioned media in mouse myotubes decreased F-actin expression, which was partially restored by COPS2 knockdown. Direct repeat 4 (DR4) response elements have been shown to positively regulate gene expression. COPS2 overexpression decreased the DR4 activity in mouse myoblasts, and COPS2 knockdown inhibited the effects of cancer-conditioned media on DR4 activity. CONCLUSIONS: These studies demonstrated that exercise training may be an important adjuvant therapy to counteract cancer cachexia and uncovered novel mechanisms involving COPS2 to regulate myotube homeostasis in cancer cachexia.


Assuntos
Complexo do Signalossomo COP9/metabolismo , Músculo Esquelético/metabolismo , Neoplasias/metabolismo , Estresse Oxidativo , Condicionamento Físico Animal , Proteínas Repressoras/metabolismo , Animais , Biomarcadores , Complexo do Signalossomo COP9/genética , Caquexia/etiologia , Caquexia/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Modelos Animais de Doenças , Metabolismo Energético , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Mioblastos/metabolismo , Neoplasias/complicações , Oxirredução , Proteômica/métodos , Ratos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais
13.
Artigo em Inglês | MEDLINE | ID: mdl-32111717

RESUMO

OBJECTIVE: Poor maternal and paternal environments increase the risk for obesity and diabetes in offspring, whereas maternal and paternal exercise in mice can improve offspring metabolic health. We determined the effects of combined maternal and paternal exercise on offspring health and the effects of parental exercise on offspring pancreas phenotype, a major tissue regulating glucose homeostasis. RESEARCH DESIGN AND METHODS: Breeders were high fat fed and housed±running wheels before breeding (males) and before and during gestation (females). Offspring groups were: both parents sedentary (Sed); maternal exercise only (Mat Ex); paternal exercise only (Pat Ex); and maternal+paternal exercise (Mat+Pat Ex). Offspring were sedentary, chow fed, and studied at weaning, 12, 20 and 52 weeks. RESULTS: While there was no effect of parental exercise on glucose tolerance at younger ages, at 52 weeks, offspring of Mat Ex, Pat Ex and Mat+Pat Ex displayed lower glycemia and improved glucose tolerance. The greatest effects were in offspring from parents that both exercised (Mat+Pat Ex). Offspring from Mat Ex, Pat Ex, and Mat+Pat Ex had decreased beta cell size, whereas islet size and beta cell mass only decreased in Mat+Pat Ex offspring. CONCLUSIONS: Maternal and paternal exercise have additive effects to improve glucose tolerance in offspring as they age, accompanied by changes in the offspring endocrine pancreas. These findings have important implications for the prevention and treatment of type 2 diabetes.


Assuntos
Glicemia/análise , Pai , Homeostase/fisiologia , Células Secretoras de Insulina/metabolismo , Mães , Fenótipo , Condicionamento Físico Animal/métodos , Animais , Diabetes Mellitus Tipo 2/prevenção & controle , Dieta Hiperlipídica , Feminino , Teste de Tolerância a Glucose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/prevenção & controle , Gravidez , Comportamento Sedentário , Desmame
14.
Mol Metab ; 30: 203-220, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31767172

RESUMO

OBJECTIVE: Gender influences obesity-related complications, including diabetes. Females are more protected from insulin resistance after diet-induced obesity, which may be related to fat accumulation and muscle insulin sensitivity. FoxOs regulate muscle atrophy and are targets of insulin action, but their role in muscle insulin sensitivity and mitochondrial metabolism is unknown. METHODS: We measured muscle insulin signaling, mitochondrial energetics, and metabolic responses to a high-fat diet (HFD) in male and female muscle-specific FoxO1/3/4 triple knock-out (TKO) mice. RESULTS: In male TKO muscle, insulin-stimulated AKT activation was decreased. AKT2 protein and mRNA levels were reduced and insulin receptor protein and IRS-2 mRNA decreased. These changes contributed to decreased insulin-stimulated glucose uptake in glycolytic muscle in males. In contrast, female TKOs maintain normal insulin-mediated AKT phosphorylation, normal AKT2 levels, and normal glucose uptake in glycolytic muscle. When challenged with a HFD, fat gain was attenuated in both male and female TKO mice, and associated with decreased glucose levels, improved glucose homeostasis, and reduced muscle triglyceride accumulation. Furthermore, female TKO mice showed increased energy expenditure, relative to controls, due to increased lean mass and maintenance of mitochondrial function in muscle. CONCLUSIONS: FoxO deletion in muscle uncovers sexually dimorphic regulation of AKT2, which impairs insulin signaling in male mice, but not females. However, loss of FoxOs in muscle from both males and females also leads to muscle hypertrophy and increases in metabolic rate. These factors mitigate fat gain and attenuate metabolic abnormalities in response to a HFD.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Resistência à Insulina/fisiologia , Obesidade/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Dieta Hiperlipídica , Metabolismo Energético , Feminino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Fatores de Transcrição Forkhead/genética , Teste de Tolerância a Glucose , Insulina/metabolismo , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Receptor de Insulina/metabolismo , Caracteres Sexuais , Fatores Sexuais , Transdução de Sinais , Aumento de Peso
15.
Nat Commun ; 10(1): 3412, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31363081

RESUMO

Skeletal muscle insulin resistance, decreased phosphatidylinositol 3-kinase (PI3K) activation and altered mitochondrial function are hallmarks of type 2 diabetes. To determine the relationship between these abnormalities, we created mice with muscle-specific knockout of the p110α or p110ß catalytic subunits of PI3K. We find that mice with muscle-specific knockout of p110α, but not p110ß, display impaired insulin signaling and reduced muscle size due to enhanced proteasomal and autophagic activity. Despite insulin resistance and muscle atrophy, M-p110αKO mice show decreased serum myostatin, increased mitochondrial mass, increased mitochondrial fusion, and increased PGC1α expression, especially PCG1α2 and PCG1α3. This leads to enhanced mitochondrial oxidative capacity, increased muscle NADH content, and higher muscle free radical release measured in vivo using pMitoTimer reporter. Thus, p110α is the dominant catalytic isoform of PI3K in muscle in control of insulin sensitivity and muscle mass, and has a unique role in mitochondrial homeostasis in skeletal muscle.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Mitocôndrias/enzimologia , Músculo Esquelético/enzimologia , Animais , Classe I de Fosfatidilinositol 3-Quinases/genética , Homeostase , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , NAD/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo
16.
Biomed Pharmacother ; 117: 109197, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31387190

RESUMO

Sucrose nonfermenting AMPK-related kinase (SNARK) is a member of the AMPK family of kinases and has been implicated in the regulation of critical metabolic processes. Recent findings demonstrate that SNARK has an important role in the maintenance of muscle mass with age. Loss of skeletal muscle mass (cachexia) is a key problem for cancer patients. Thus, based on our previous findings with aging, we hypothesized that SNARK would play a role in regulating muscle mass under conditions of cancer cachexia. To test this hypothesis, Lewis Lung Carcinoma tumor cells or vehicle were injected subcutaneously in the right flank of wild type mice, muscle-specific transgenic mice expressing inactive SNARK mutant (SDN) or muscle-specific transgenic mice overexpressing wild-type SNARK (SWT). All tumor-bearing mice presented muscle wasting compared to vehicle-injected mice. However, SDN tumor-bearing mice had more pronounced atrophy compared to wild-type and SWT tumor-bearing mice. Histological analysis confirmed muscle atrophy in tumor-bearing mice, and SDN tumor-bearing mice exhibited a significantly smaller skeletal muscle cross-sectional area than wild-type and SWT tumor-bearing mice. Moreover, SDN tumor-bearing mice had increased skeletal muscle BAX protein expression, a marker of apoptosis, compared to other groups.Thus, lack of SNARK in skeletal muscle aggravates cancer-induced skeletal muscle wasting. These findings uncover a role for SNARK in the maintenance of skeletal muscle mass under cachexia conditions.


Assuntos
Carcinoma Pulmonar de Lewis/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Sacarose/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Apoptose/fisiologia , Caquexia/metabolismo , Caquexia/patologia , Carcinoma Pulmonar de Lewis/complicações , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atrofia Muscular/etiologia
17.
Cell Metab ; 30(4): 768-783.e7, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31353262

RESUMO

Distinct oxygenases and their oxylipin products have been shown to participate in thermogenesis by mediating physiological adaptations required to sustain body temperature. Since the role of the lipoxygenase (LOX) family in cold adaptation remains elusive, we aimed to investigate whether, and how, LOX activity is required for cold adaptation and to identify LOX-derived lipid mediators that could serve as putative cold mimetics with therapeutic potential to combat diabetes. By utilizing mass-spectrometry-based lipidomics in mice and humans, we demonstrated that cold and ß3-adrenergic stimulation could promote the biosynthesis and release of 12-LOX metabolites from brown adipose tissue (BAT). Moreover, 12-LOX ablation in mouse brown adipocytes impaired glucose uptake and metabolism, resulting in blunted adaptation to the cold in vivo. The cold-induced 12-LOX product 12-HEPE was found to be a batokine that improves glucose metabolism by promoting glucose uptake into adipocytes and skeletal muscle through activation of an insulin-like intracellular signaling pathway.


Assuntos
Tecido Adiposo Marrom/metabolismo , Araquidonato 12-Lipoxigenase/fisiologia , Resposta ao Choque Frio/fisiologia , Metabolismo Energético/fisiologia , Obesidade/metabolismo , Adipócitos Marrons/metabolismo , Adipócitos Marrons/patologia , Animais , Linhagem Celular , Feminino , Glucose/metabolismo , Humanos , Masculino , Camundongos , Termogênese/fisiologia
18.
Nat Metab ; 1(2): 291-303, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-31032475

RESUMO

Exercise improves health and well-being across diverse organ systems, and elucidating mechanisms underlying the beneficial effects of exercise can lead to new therapies. Here, we show that transforming growth factor-ß2 (TGF-ß2) is secreted from adipose tissue in response to exercise and improves glucose tolerance in mice. We identify TGF-ß2 as an exercise-induced adipokine in a gene expression analysis of human subcutaneous adipose tissue biopsies after exercise training. In mice, exercise training increases TGF-ß2 in scWAT, serum, and its secretion from fat explants. Transplanting scWAT from exercise-trained wild type mice, but not from adipose tissue-specific Tgfb2-/- mice, into sedentary mice improves glucose tolerance. TGF-ß2 treatment reverses the detrimental metabolic effects of high fat feeding in mice. Lactate, a metabolite released from muscle during exercise, stimulates TGF-ß2 expression in human adipocytes. Administration of the lactate-lowering agent dichloroacetate during exercise training in mice decreases circulating TGF-ß2 levels and reduces exercise-stimulated improvements in glucose tolerance. Thus, exercise training improves systemic metabolism through inter-organ communication with fat via a lactate-TGF-ß2-signaling cycle.


Assuntos
Adipocinas/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Condicionamento Físico Animal , Fator de Crescimento Transformador beta2/metabolismo , Tecido Adiposo/metabolismo , Animais , Camundongos
19.
J Cell Biochem ; 120(1): 685-696, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30256437

RESUMO

The signaling mechanisms mediating myocardial glucose transport are not fully understood. Sucrose nonfermenting AMP-activated protein kinase (AMPK)-related kinase (SNARK) is an AMPK-related protein kinase that is expressed in the heart and has been implicated in contraction-stimulated glucose transport in mouse skeletal muscle. We first determined if SNARK is phosphorylated on Thr208 , a site critical for SNARK activity. Mice were treated with exercise, ischemia, submaximal insulin, or maximal insulin. Treadmill exercise slightly, but significantly increased SNARK Thr208 phosphorylation. Ischemia also increased SNARK Thr208 phosphorylation, but there was no effect of submaximal or maximal insulin. HL1 cardiomyocytes were used to overexpress wild-type (WT) SNARK and to knockdown endogenous SNARK. Overexpression of WT SNARK had no effect on ischemia-stimulated glucose transport; however, SNARK knockdown significantly decreased ischemia-stimulated glucose transport. SNARK overexpression or knockdown did not alter insulin-stimulated glucose transport or glycogen concentrations. To study SNARK function in vivo, SNARK heterozygous knockout mice (SNARK+/- ) and WT littermates performed treadmill exercise. Exercise-stimulated glucose transport was decreased by ~50% in hearts from SNARK+/- mice. In summary, exercise and ischemia increase SNARK Thr208 phosphorylation in the heart and SNARK regulates exercise-stimulated and ischemia-stimulated glucose transport. SNARK is a novel mediator of insulin-independent glucose transport in the heart.


Assuntos
Vasos Coronários/metabolismo , Glucose/metabolismo , Isquemia/metabolismo , Miocárdio/metabolismo , Condicionamento Físico Animal , Proteínas Serina-Treonina Quinases/genética , Animais , Transporte Biológico , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Insulina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Fosforilação , Transdução de Sinais/efeitos dos fármacos
20.
Diabetes ; 67(12): 2530-2540, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30344184

RESUMO

Poor paternal diet has emerged as a risk factor for metabolic disease in offspring, and alterations in sperm may be a major mechanism mediating these detrimental effects of diet. Although exercise in the general population is known to improve health, the effects of paternal exercise on sperm and offspring metabolic health are largely unknown. Here, we studied 7-week-old C57BL/6 male mice fed a chow or high-fat diet and housed either in static cages (sedentary) or cages with attached running wheels (exercise trained). After 3 weeks, one cohort of males was sacrificed and cauda sperm obtained, while the other cohort was bred with chow-fed sedentary C57BL/6 females. Offspring were chow fed, sedentary, and studied during the first year of life. We found that high-fat feeding of sires impairs glucose tolerance and increases the percentage of fat mass in both male and female offspring at 52 weeks of age. Strikingly, paternal exercise suppresses the effects of paternal high-fat diet on offspring, reversing the observed impairment in glucose tolerance, percentage of fat mass, and glucose uptake in skeletal muscles of the offspring. These changes in offspring phenotype are accompanied by changes in sperm physiology, as, for example, high-fat feeding results in decreased sperm motility, an effect normalized in males subject to exercise training. Deep sequencing of sperm reveals pronounced effects of exercise training on multiple classes of small RNAs, as multiple changes to the sperm RNA payload observed in animals consuming a high-fat diet are suppressed by exercise training. Thus, voluntary exercise training of male mice results in pronounced improvements in the metabolic health of adult male and female offspring. We provide the first in-depth analysis of small RNAs in sperm from exercise-trained males, revealing a marked change in the levels of multiple small RNAs with the potential to alter phenotypes in the next generation.


Assuntos
Glicemia/metabolismo , Metabolismo dos Carboidratos/fisiologia , Músculo Esquelético/metabolismo , Comportamento Paterno/fisiologia , Condicionamento Físico Animal/fisiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Adiposidade/fisiologia , Animais , Dieta Hiperlipídica , Feminino , Masculino , Camundongos , Proteínas Nucleares/fisiologia , Obesidade/metabolismo , Gravidez , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...